Please wait a minute...
Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (4): 464-484    DOI: 10.1631/FITEE.1500393
Regular Paper     
用于解决非线性受电弓系统的启发式神经网络计算
Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz
Neuro-heuristic computational intelligence for solving nonlinear pantograph systems
Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz
Department of Electrical Engineering, COMSATs Institute of Information Technology, Attock 43200, Pakistan; Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan; Department of Mathematics, Preston University, Islamabad Campus, Kohat, Islamabad 44000, Pakistan; Department of Mathematical Sciences, United Arab Emirates University, Al-Ain Box 15551, UAE; Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA
 全文: PDF 
摘要: 概要:本文提出了一种启发式神经网络计算平台,用于解决基于不同阶数泛函微分方程的非线性受电弓系统(Pantograph systems based on functional differential equations, P-FDEs)中的初值问题(Initial value problems, IVPs)。该方案利用了前馈人工神经网络(Artificial neural networks, ANNs)、基于遗传算法(Genetical gorithms, GAs)的进化计算技术,以及内点技术(Interior-point technique, IPT)。通过设定一个无监督学习误差,针对完全和不完全满足初始条件两种情况,利用ANNs创建了系统的两种数学模型。采用GA-IPT混合算法,对ANN模型的设计参数进行了优化。在GA-IPT中,GA是有效的全局搜索工具,IPT则用于快速的局部收敛。针对三种不同类型的1-3阶P-FDEs的IVPs对该方案进行了测试。通过对比现有的精确解,确认了该方案的正确性。通过采用不同数量神经元的ANN模型进行了大量的数值实验,进一步验证了该方案的准确性和收敛性。
关键词: 神经网络初值问题(IVP)函微分方程(FDE)无监督学习遗传算法(GAs)内点技术(IPT)    
Abstract: We present a neuro-heuristic computing platform for finding the solution for initial value problems (IVPs) of nonlinear pantograph systems based on functional differential equations (P-FDEs) of different orders. In this scheme, the strengths of feed-forward artificial neural networks (ANNs), the evolutionary computing technique mainly based on genetic algorithms (GAs), and the interior-point technique (IPT) are exploited. Two types of mathematical models of the systems are constructed with the help of ANNs by defining an unsupervised error with and without exactly satisfying the initial conditions. The design parameters of ANN models are optimized with a hybrid approach GA–IPT, where GA is used as a tool for effective global search, and IPT is incorporated for rapid local convergence. The proposed scheme is tested on three different types of IVPs of P-FDE with orders 1–3. The correctness of the scheme is established by comparison with the existing exact solutions. The accuracy and convergence of the proposed scheme are further validated through a large number of numerical experiments by taking different numbers of neurons in ANN models.
Key words: Neural networks    Initial value problems (IVPs)    Functional differential equations (FDEs)    Unsupervised learning    Genetic algorithms (GAs)    Interior-point technique (IPT)
收稿日期: 2015-11-10 出版日期: 2017-04-12
CLC:  TP183  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Muhammad Asif Zahoor Raja
Iftikhar Ahmad
Imtiaz Khan
Muhammed Ibrahem Syam
Abdul Majid Wazwaz

引用本文:

Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 464-484.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500393        http://www.zjujournals.com/xueshu/fitee/CN/Y2017/V18/I4/464

1 Agarwal, R.P., Chow, Y.M., 1986. Finite difference methods for boundary-value problems of differential equations with deviating arguments. Comput. Math. Appl., 12(11): 1143-1153.
doi: 10.1016/0898-1221(86)90018-0
2 Arqub, O.A., Zaer, A.H., 2014. Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inform. Sci., 279:396-415.
doi: 10.1016/j.ins.2014.03.128
3 Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F., 2007. Intoduction to the Theory of Functional Differential Equations: Methods and Applications. Hindawi Publishing Corporation, New York, USA.
doi: 10.1155/9789775945495
4 Barro, G., So, O., Ntaganda, J.M., et al., 2008. A numerical method for some nonlinear differential equation models in biology. Appl. Math. Comput., 200(1):28-33.
doi: 10.1016/j.amc.2007.10.041
5 Chakraverty, S., Mall, S., 2014. Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neur. Comput. Appl., 25(3):585-594.
doi: 10.1007/s00521-013-1526-4
6 Dehghan, M., Salehi, R., 2010. Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput. Phys. Commun., 181:1255-1265.
doi: 10.1016/j.cpc.2010.03.014
7 Derfel, G., Iserles, A., 1997. The pantograph equation in the complex plane. J. Math. Anal. Appl., 213(1):117-132.
doi: 10.1006/jmaa.1997.5483
8 Evans, D.J., Raslan, K.R., 2005. The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math., 82(1):49-54.
doi: 10.1080/00207160412331286815
9 Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The University of Michigan Press, Ann Arbor, USA.
10 Iserles, A., 1993. On the generalized pantograph functional-differential equation. Eur. J. Appl. Math., 4(1):1-38.
doi: 10.1017/S0956792500000966
11 Khan, J.A., Raja, M.A.Z., Qureshi, I.M., 2011. Novel approach for van der Pol oscillator on the continuous time domain. Chin. Phys. Lett., 28:110205.
doi: 10.1088/0256-307X/28/11/110205
12 Khan, J.A., Raja, M.A.Z., Syam, M.A., et al., 2015. Design and application of nature inspired computing approach for non-linear stiff oscillatory problems. Neur. Comput. Appl., 26(7):1763-1780.
doi: 10.1007/s00521-015-1841-z
13 Mall, S., Chakraverty, S., 2014a. Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput., 247:100-114.
doi: 10.1016/j.amc.2014.08.085
14 Mall, S., Chakraverty, S., 2014b. Numerical solution of nonlinear singular initial value problems of Emden–Fowler type using Chebyshev neural network method. Neurocomputing, 149(B):975-982.
doi: 10.1016/j.neucom.2014.07.036
15 McFall, K.S., 2013. Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J. Franklin Inst., 350(2): 300-317.
doi: 10.1016/j.jfranklin.2012.11.003
16 Ockendon, J.R., Tayler, A.B., 1971. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. A, 322(1551):447-468.
doi: 10.1098/rspa.1971.0078
17 Pandit, S., Kumar, M., 2014. Haar wavelet approach for numerical solution of two parameters singularly perturbed boundary value problems. Appl. Math. Inform. Sci., 8(6): 2965-2974.
18 Peng, Y.G., Jun, W., Wei, W., 2014. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(2):139-146.
doi: 10.1631/jzus.C1300182
19 Potra, F.A., Wright, S.J., 2000. Interior-point methods. J. Comput. Appl. Math., 124(1-2):281-302.
doi: 10.1016/S0377-0427(00)00433-7
20 Raja, M.A.Z., 2014a. Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl. Soft Comput., 24:806-821.
doi: 10.1016/j.asoc.2014.08.055
21 Raja, M.A.Z., 2014b. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect. Sci., 26(3):195-214.
doi: 10.1080/09540091.2014.907555
22 Raja, M.A.Z., 2014c. Stochastic numerical techniques for solving Troesch’s problem. Inform. Sci., 279:860-873.
doi: 10.1016/j.ins.2014.04.036
23 Raja, M.A.Z., 2014d. Unsupervised neural networks for solving Troesch’s problem. Chin. Phys. B, 23(1):018903.
24 Raja, M.A.Z., Ahmad, S.I., 2014. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neur. Comput. Appl., 24(3):549-561.
doi: 10.1007/s00521-012-1261-2
25 Raja, M.A.Z., Samar, R., 2014a. Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing, 124:178-193.
doi: 10.1016/j.neucom.2013.07.013
26 Raja, M.A.Z., Samar, R., 2014b. Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput. Fluids, 91:28-46.
doi: 10.1016/j.compfluid.2013.12.005
27 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010a. Evolutionary computational intelligence in solving the fractional differential equations. Asian Conf. on Intelligent Information and Database Systems, p.231-240.
doi: 10.1007/978-3-642-12145-6_24
28 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010b. Heuristic computational approach using swarm intelligence in solving fractional differential equations. Proc. 12th Annual Conf. Companion on Genetic and Evolutionary Computation, p.2023-2026.
doi: 10.1145/1830761.1830850
29 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010c. A new stochastic approach for solution of Riccati differential equation of fractional order. Ann. Math. Artif. Intell., 60(3):229-250.
doi: 10.1007/s10472-010-9222-x
30 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011a. Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math. Prob. Eng., 2011:765075.
doi: 10.1155/2011/675075
31 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011b. Swarm intelligence optimized neural network for solving fractional order systems of Bagley-Tervik equation. Eng. Intell. Syst., 19(1):41-51.
32 Raja, M.A.Z., Khan, J.A., Ahmad, S.I., et al., 2012. A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Comput. Intell. Neur., 2012:721867.
doi: 10.1155/2012/721867
33 Raja, M.A.Z., Ahmad, S.I., Samar, R., 2013. Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neur. Comput. Appl., 23(7):2199-2210.
doi: 10.1007/s00521-012-1170-4
34 Raja, M.A.Z., Samar, R., Rashidi, M.M., 2014a. Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neur. Comput. Appl., 25(7):1585-1601.
doi: 10.1007/s00521-014-1641-x
35 Raja, M.A.Z., Ahmad, S.I., Samar, R., 2014b. Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neur. Comput. Appl., 25(7):1723-1739.
doi: 10.1007/s00521-014-1664-3
36 Raja, M.A.Z., Khan, J.A., Shah, S.M., et al., 2015a. Comparison of three unsupervised neural network models for first Painlevé transcendent. Neur. Comput. Appl., 26(5):1055-1071.
doi: 10.1007/s00521-014-1774-y
37 Raja, M.A.Z., Sabir, Z., Mahmood, N., et al., 2015b. Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neur. Comput. Appl., 26(1):1-23.
doi: 10.1007/s00521-014-1676-z
38 Raja, M.A.Z., Manzar, M.A., Samar, R., 2015c. An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl. Math. Model., 39(10-11):3075-3093.
doi: 10.1016/j.apm.2014.11.024
39 Raja, M.A.Z., Khan, J.A., Behloul, D., et al., 2015d. Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl. Soft Comput., 26:244-256.
doi: 10.1016/j.asoc.2014.10.009
40 Raja, M.A.Z., Khan, J.A., Haroon, T., 2015e. Numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiw. Inst. Chem. Eng., 48:26-39.
doi: 10.1016/j.jtice.2014.10.018
41 Saadatmandi, A., Dehghan, M., 2009. Variational iteration method for solving a generalized pantograph equation. Comput. Math. Appl., 58(11-12):2190-2196.
doi: 10.1016/j.camwa.2009.03.017
42 Sedaghat, S., Ordokhani, Y., Dehghan, M., 2012. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonl. Sci. Numer. Simul., 17(12):4815-4830.
doi: 10.1016/j.cnsns.2012.05.009
43 Shakeri, F., Dehghan, M., 2010. Application of the decomposition method of Adomian for solving the pantograph equation of order m. J. Phys. Sci., 65(5):453-460.
doi: 10.1515/zna-2010-0510
44 Srinivasan, S., Saghir, M.Z., 2014. Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks. Neur. Comput. Appl., 25(5): 1193-1203.
doi: 10.1007/s00521-014-1603-3
45 Tang, L., Ying, G., Liu, Y.J., 2014. Adaptive near optimal neural control for a class of discrete-time chaotic system. Neur. Comput. Appl., 25(5):1111-1117.
doi: 10.1007/s00521-014-1595-z
46 Tohidi, E., Bhrawy, A.H., Erfani, K.A., 2013. A collocation method based on Berneoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model, 37(6):4283-4294.
doi: 10.1016/j.apm.2012.09.032
47 Troiano, L., Cosimo, B., 2014. Genetic algorithms supporting generative design of user interfaces: examples. Inform. Sci., 259:433-451.
doi: 10.1016/j.ins.2012.01.006
48 Uysal, A., Raif, B., 2013. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(12):941-952.
doi: 10.1631/jzus.C1300085
49 Wright, S.J., 1997. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA.
50 Xu, D.Y., Yang, S.L., Liu, R.P., 2013. A mixture of HMM, GA, and Elman network for load prediction in cloud-oriented data centers. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(11):845-858.
doi: 10.1631/jzus.C1300109
51 Yusufoğlu, E., 2010. An efficient algorithm for solving gener alized pantograph equations with linear functional argument. Appl. Math. Comput., 217(7):3591-3595.
doi: 10.1016/j.amc.2010.09.005
52 Yüzbaşı, Ş., Mehmet, S., 2013. An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model., 37(22):9160-9173.
doi: 10.1016/j.apm.2013.04.028
53 Yüzbaşı, Ş., Sahin, N., Sezer, M., 2011. A Bessel collocation method for numerical solution of generalized pantograph equations. Numer. Meth. Part. Diff. Eq., 28(4):1105-1123.
doi: 10.1002/num.20660
54 Zhang, H.G., Wang, Z., Liu, D., 2008. Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neur. Netw., 19(5): 855-873.
doi: 10.1109/TNN.2007.912319
55 Zhang, Y.T., Liu, C.Y., Wei, S.S., et al., 2014. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(7):564-573.
doi: 10.1631/jzus.C1300264
[1] Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, Dong-lian Qi. 一种非侵入式的基于功耗的可编程逻辑控制器异常检测方案[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 519-534.
[2] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[3] Xiao Ding, Bing Qin, Ting Liu. 自底向上事件抽取系统[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 541-552.
[4] Gurmanik Kaur, Ajat Shatru Arora, Vijender Kumar Jain. 基于体位特征使用混杂模型预测血压对于无支撑后背的反应[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 474-485.
[5] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[6] Ying Cai, Meng-long Yang, Jun Li. 基于深度卷积网络的多分类法在头部姿态估计中的应用[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(11): 930-939.
[7] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, Xiang Chen. 用于三维CAD模型分类的深度学习方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 91-106.
[8] Xiao-hua Wang, Juan-juan Yu, Yao Huang, Hua Wang, Zhong-hua Miao. 线性脉冲系统的自适应动态规划方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(1): 43-50.