Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (1): 31-42    DOI: 10.1631/jzus.C1300123
    
有稳定和不稳定子系统的非线性脉冲切换系统的指数稳定性
Xiao-li Zhang, An-hui Lin, Jian-ping Zeng
School of Information Science and Technology, Xiamen University, Xiamen 361005, China
Exponential stability of nonlinear impulsive switched systems with stable and unstable subsystems
Xiao-li Zhang, An-hui Lin, Jian-ping Zeng
School of Information Science and Technology, Xiamen University, Xiamen 361005, China
 全文: PDF 
摘要: 研究目的:对一类同时包含稳定和不稳定子系统的切换非线性系统的稳定性及鲁棒稳定性进行研究。旨在针对在切换时刻包含非线性脉冲,且每个子系统都具有非线性级联形式的切换非线性系统,给出其稳定的充分条件,为此类系统的稳定性问题研究提供理论依据。
重要结论:将在切换线性系统切换时刻的非线性脉冲处理方法和手段推广至切换非线性系统中。在应用非线性系统的Lyapunov函数处理非线性脉冲时,适当地利用了矩阵不等式的相关方法。当不稳定子系统和稳定子系统的活跃时间小于一定比例,并且在切换时刻存在满足相应界的非线性脉冲时,切换非线性系统仍能保持其指数稳定性。在不确定性满足相应界的条件下,切换非线性系统也能保持其鲁棒指数稳定性。
Abstract: Exponential stability and robust exponential stability relating to switched systems consisting of stable and unstable nonlinear subsystems are considered in this study. At each switching time instant, the impulsive increments which are nonlinear functions of the states are extended from switched linear systems to switched nonlinear systems. Using the average dwell time method and piecewise Lyapunov function approach, when the total active time of unstable subsystems compared to the total active time of stable subsystems is less than a certain proportion, the exponential stability of the switched system is guaranteed. The switching law is designed which includes the average dwell time of the switched system. Switched systems with uncertainties are also studied. Sufficient conditions of the exponential stability and robust exponential stability are provided for switched nonlinear systems. Finally, simulations show the effectiveness of the result.
Key words: Average dwell time    Impulse    Exponential stability    Robustness
收稿日期: 2013-05-09 出版日期: 2014-01-07
CLC:  TP13  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Xiao-li Zhang
An-hui Lin
Jian-ping Zeng

引用本文:

Xiao-li Zhang, An-hui Lin, Jian-ping Zeng. Exponential stability of nonlinear impulsive switched systems with stable and unstable subsystems. Front. Inform. Technol. Electron. Eng., 2014, 15(1): 31-42.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1300123        http://www.zjujournals.com/xueshu/fitee/CN/Y2014/V15/I1/31

[1] Bin-bin Lei, Xue-chao Duan, Hong Bao, Qian Xu. 每个输入具有两个非线性模糊集合的区间二型模糊控制器解析结构的推导与分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 587-602.
[2] Friederike Wall. 自适应分布式搜索过程中的组织变化及问题复杂度对性能的影响[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 283-295.
[3] J. A. Rincon, J. Bajo, A. Fernandez, V. Julian, C. Carrascosa. 人机交互社会构建中情感的应用[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 325-337.
[4] Di Guo, Rong-hao Zheng, Zhi-yun Lin, Gang-feng Yan. 基于有向权重拓扑的二阶多智能体系统可控性分析[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 838-847.
[5] Zhi-min Han, Zhi-yun Lin, Min-yue Fu, Zhi-yong Chen. 图拉普拉斯视角下的多智能体系统分布式协调控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 429-448.
[6] Zhi-qiang Song, Hua-xiong Li, Chun-lin Chen, Xian-zhong Zhou, Feng Xu. 基于微分几何的运动目标协同对峙跟踪[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 284-292.
[7] Jian-cheng Fang, Ke Sun. Composite disturbance attenuation based saturated control for maintenance of low Earth orbit (LEO) formations[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 328-338.
[8] Jian Xu, Jian-xun Li, Sheng Xu. Quantized innovations Kalman filter: stability and modification with scaling quantization[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 118-130.
[9] Amin Jajarmi, Naser Pariz, Sohrab Effati, Ali Vahidian Kamyad. [J]. Frontiers of Information Technology & Electronic Engineering, 2011, 12(8): 667-677.
[10] Huan Shi, Hua-ping Dai, You-xian Sun. [J]. Frontiers of Information Technology & Electronic Engineering, 2011, 12(8): 658-666.
[11] Lei Wang, Huan Shi, You-xian Sun. Number estimation of controllers for pinning a complex dynamical network[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 470-477.
[12] Jun Huang, Zheng-zhi Han. Tracking control of the linear differential inclusion[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 464-469.