Infinite horizon nonlinear optimal control problem,Pontryagin’s maximum principle,Two-point boundary value problem,Extended modal series method," /> Solving infinite horizon nonlinear optimal control problems using an extended modal series method" /> Solving infinite horizon nonlinear optimal control problems using an extended modal series method" /> Infinite horizon nonlinear optimal control problem,Pontryagin’s maximum principle,Two-point boundary value problem,Extended modal series method,"/> <span style="font-size:13.3333px;">Solving infinite horizon nonlinear optimal control problems using an extended modal series method</span>
Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (8): 667-677    DOI: 10.1631/jzus.C1000325
    
Solving infinite horizon nonlinear optimal control problems using an extended modal series method
Amin Jajarmi*,1, Naser Pariz1, Sohrab Effati2, Ali Vahidian Kamyad2
1 Advanced Control and Nonlinear Laboratory, Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 2 Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
Solving infinite horizon nonlinear optimal control problems using an extended modal series method
Amin Jajarmi*,1, Naser Pariz1, Sohrab Effati2, Ali Vahidian Kamyad2
1 Advanced Control and Nonlinear Laboratory, Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 2 Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
 全文: PDF(474 KB)  
摘要: This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs). In this approach, a nonlinear two-point boundary value problem (TPBVP), derived from Pontryagin’s maximum principle, is transformed into a sequence of linear time-invariant TPBVPs. Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series. Hence, to obtain the optimal solution, only the techniques for solving linear ordinary differential equations are employed. An efficient algorithm is also presented, which has low computational complexity and a fast convergence rate. Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP. The results not only demonstrate the efficiency, simplicity, and high accuracy of the suggested approach, but also indicate its effectiveness in practical use.
关键词: Infinite horizon nonlinear optimal control problem')" href="#">Infinite horizon nonlinear optimal control problemPontryagin’s maximum principleTwo-point boundary value problemExtended modal series method    
Abstract: This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs). In this approach, a nonlinear two-point boundary value problem (TPBVP), derived from Pontryagin’s maximum principle, is transformed into a sequence of linear time-invariant TPBVPs. Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series. Hence, to obtain the optimal solution, only the techniques for solving linear ordinary differential equations are employed. An efficient algorithm is also presented, which has low computational complexity and a fast convergence rate. Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP. The results not only demonstrate the efficiency, simplicity, and high accuracy of the suggested approach, but also indicate its effectiveness in practical use.
Key words: Infinite horizon nonlinear optimal control problem    Pontryagin’s maximum principle    Two-point boundary value problem    Extended modal series method
收稿日期: 2010-09-19 出版日期: 2011-08-03
CLC:  TP13  
服务  
把本文推荐给朋友 Solving infinite horizon nonlinear optimal control problems using an extended modal series method”的文章,特向您推荐。请打开下面的网址:http://www.zjujournals.com/xueshu/fitee/CN/abstract/abstract15074.shtml" name="neirong"> Solving infinite horizon nonlinear optimal control problems using an extended modal series method">
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Amin Jajarmi
Naser Pariz
Sohrab Effati
Ali Vahidian Kamyad

引用本文:

Amin Jajarmi, Naser Pariz, Sohrab Effati, Ali Vahidian Kamyad. Solving infinite horizon nonlinear optimal control problems using an extended modal series method. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 667-677.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1000325        http://www.zjujournals.com/xueshu/fitee/CN/Y2011/V12/I8/667

[1] Bin-bin Lei, Xue-chao Duan, Hong Bao, Qian Xu. 每个输入具有两个非线性模糊集合的区间二型模糊控制器解析结构的推导与分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 587-602.
[2] Friederike Wall. 自适应分布式搜索过程中的组织变化及问题复杂度对性能的影响[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 283-295.
[3] J. A. Rincon, J. Bajo, A. Fernandez, V. Julian, C. Carrascosa. 人机交互社会构建中情感的应用[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 325-337.
[4] Di Guo, Rong-hao Zheng, Zhi-yun Lin, Gang-feng Yan. 基于有向权重拓扑的二阶多智能体系统可控性分析[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 838-847.
[5] Zhi-min Han, Zhi-yun Lin, Min-yue Fu, Zhi-yong Chen. 图拉普拉斯视角下的多智能体系统分布式协调控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 429-448.
[6] Zhi-qiang Song, Hua-xiong Li, Chun-lin Chen, Xian-zhong Zhou, Feng Xu. 基于微分几何的运动目标协同对峙跟踪[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 284-292.
[7] Xiao-li Zhang, An-hui Lin, Jian-ping Zeng. 有稳定和不稳定子系统的非线性脉冲切换系统的指数稳定性[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(1): 31-42.
[8] Jian-cheng Fang, Ke Sun. Composite disturbance attenuation based saturated control for maintenance of low Earth orbit (LEO) formations[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 328-338.
[9] Jian Xu, Jian-xun Li, Sheng Xu. Quantized innovations Kalman filter: stability and modification with scaling quantization[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 118-130.
[10] Huan Shi, Hua-ping Dai, You-xian Sun. Blinking adaptation for synchronizing a mobile agent network[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 658-666.
[11] Lei Wang, Huan Shi, You-xian Sun. Number estimation of controllers for pinning a complex dynamical network[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 470-477.
[12] Jun Huang, Zheng-zhi Han. Tracking control of the linear differential inclusion[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 464-469.