Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (6): 460-471    DOI: 10.1631/jzus.C1100273
    
High-performance low-leakage regions of nano-scaled CMOS digital gates under variations of threshold voltage and mobility
Hossein Aghababa, Behjat Forouzandeh, Ali Afzali-Kusha
Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 14395, Iran
High-performance low-leakage regions of nano-scaled CMOS digital gates under variations of threshold voltage and mobility
Hossein Aghababa, Behjat Forouzandeh, Ali Afzali-Kusha
Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 14395, Iran
 全文: PDF 
摘要: We propose a modeling methodology for both leakage power consumption and delay of basic CMOS digital gates in the presence of threshold voltage and mobility variations. The key parameters in determining the leakage and delay are OFF and ON currents, respectively, which are both affected by the variation of the threshold voltage. Additionally, the current is a strong function of mobility. The proposed methodology relies on a proper modeling of the threshold voltage and mobility variations, which may be induced by any source. Using this model, in the plane of threshold voltage and mobility, we determine regions for different combinations of performance (speed) and leakage. Based on these regions, we discuss the trade-off between leakage and delay where the leakage-delay-product is the optimization objective. To assess the accuracy of the proposed model, we compare its predictions with those of HSPICE simulations for both basic digital gates and ISCAS85 benchmark circuits in 45-, 65-, and 90-nm technologies.
关键词: High-performance circuitLow-leakage circuitManufacturing process variationCMOS integrated circuit    
Abstract: We propose a modeling methodology for both leakage power consumption and delay of basic CMOS digital gates in the presence of threshold voltage and mobility variations. The key parameters in determining the leakage and delay are OFF and ON currents, respectively, which are both affected by the variation of the threshold voltage. Additionally, the current is a strong function of mobility. The proposed methodology relies on a proper modeling of the threshold voltage and mobility variations, which may be induced by any source. Using this model, in the plane of threshold voltage and mobility, we determine regions for different combinations of performance (speed) and leakage. Based on these regions, we discuss the trade-off between leakage and delay where the leakage-delay-product is the optimization objective. To assess the accuracy of the proposed model, we compare its predictions with those of HSPICE simulations for both basic digital gates and ISCAS85 benchmark circuits in 45-, 65-, and 90-nm technologies.
Key words: High-performance circuit    Low-leakage circuit    Manufacturing process variation    CMOS integrated circuit
收稿日期: 2011-09-13 出版日期: 2012-06-05
CLC:  TN4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Hossein Aghababa
Behjat Forouzandeh
Ali Afzali-Kusha

引用本文:

Hossein Aghababa, Behjat Forouzandeh, Ali Afzali-Kusha. High-performance low-leakage regions of nano-scaled CMOS digital gates under variations of threshold voltage and mobility. Front. Inform. Technol. Electron. Eng., 2012, 13(6): 460-471.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1100273        http://www.zjujournals.com/xueshu/fitee/CN/Y2012/V13/I6/460

[1] Sepehr Tabrizchi, Nooshin Azimi, Keivan Navi. 基于碳纳米管场效应管的新型三元半加器及乘法器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 423-433.
[2] Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser. 千兆赫片上互联单壁纳米碳管电分析[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 262-271.
[3] De-xuan Zou, Gai-ge Wang, Gai Pan, Hong-wei Qi. 基于修正模拟退火算法及溢出面积模型的固定边界布图规划[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1228-1244.
[4] Liang Geng, Ji-Zhong Shen, Cong-Yuan Xu . 采用内嵌时钟控制技术的低功耗双边沿隐形脉冲触发器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 962-972.
[5] Wei Zhang, You-de Hu, Li-rong Zheng. 基于驻波振荡器的PLL设计与仿真[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 258-264.
[6] Mao-qun Yao, Kai Yang, Cong-yuan Xu, Ji-zhong Shen. 基于RTD三变量通用逻辑门的设计[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 694-699.
[7] Shou-biao Tan, Wen-juan Lu, Chun-yu Peng, Zheng-ping Li, You-wu Tao, Jun-ning Chen. 用于低电压下SRAM灵敏放大器工艺变化鲁棒性时序的多级双复制位线延迟技术[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 700-706.
[8] Ming-jun Ma, Zhong-he Jin, Hui-jie Zhu. 一种联合调制反馈和温度补偿改善闭环MEMS电容式加速度计漂移的方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 497-510.
[9] Kai Huang, Xiao-xu Zhang, Si-wen Xiu, Dan-dan Zheng, Min Yu, De Ma, Kai Huang, Gang Chen, Xiao-lang Yan. 面向多媒体特定应用的剖析和标注相结合MPSoC性能评估方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 135-151.
[10] Najam Muhammad Amin, Zhi-gong Wang, Zhi-qun Li. 基于65 nm CMOS工艺且应用于60 GHz接收机的折叠下变频混频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1190-1199.
[11] Xiao-hua Li, Ji-zhong Shen. 或-符合代数系统中的对称变量检测算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1174-1182.
[12] Hüseyin Oktay Erkol, Hüseyin Demirel. 多自由度系统运动学方程求解的VHDL应用[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[13] Fa-en Liu, Zhi-gong Wang, Zhi-qun Li, Qin Li, Lu Tang, Ge-liang Yang. 基于90 nm CMOS工艺的31–45.5 GHz注入式锁定分频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1183-1189.
[14] Ting Guo, Zhi-qun Li, Qin Li, Zhi-gong Wang. 应用于硅基毫米波锁相环频率综合器的37GHz宽带可编程模分频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1200-1210.
[15] Qian-qi Le, Guo-wu Yang, William N. N. Hung, Xiao-yu Song, Fu-you Fan. 性能驱动的可靠片上网络分配和映射[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 1009-1020.