Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (12): 1000-1009    DOI: 10.1631/jzus.C1100037
    
Comprehensive and efficient discovery of time series motifs
Lian-hua Chi*,1, He-hua Chi2, Yu-cai Feng1, Shu-liang Wang3, Zhong-sheng Cao1
1 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2 State Key Laboratory of Software Engineering, Computer School, Wuhan University, Wuhan 430079, China 3 International School of Software, Wuhan University, Wuhan 430079, China
Comprehensive and efficient discovery of time series motifs
Lian-hua Chi*,1, He-hua Chi2, Yu-cai Feng1, Shu-liang Wang3, Zhong-sheng Cao1
1 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2 State Key Laboratory of Software Engineering, Computer School, Wuhan University, Wuhan 430079, China 3 International School of Software, Wuhan University, Wuhan 430079, China
 全文: PDF(832 KB)  
摘要: Time series motifs are previously unknown, frequently occurring patterns in time series or approximately repeated subsequences that are very similar to each other. There are two issues in time series motifs discovery, the deficiency of the definition of K-motifs given by Lin et al. (2002) and the large computation time for extracting motifs. In this paper, we propose a relatively comprehensive definition of K-motifs to obtain more valuable motifs. To minimize the computation time as much as possible, we extend the triangular inequality pruning method to avoid unnecessary operations and calculations, and propose an optimized matrix structure to produce the candidate motifs almost immediately. Results of two experiments on three time series datasets show that our motifs discovery algorithm is feasible and efficient.
关键词: Time series motifsDefinition of K-motifsOptimized matrix structureFast pruning method    
Abstract: Time series motifs are previously unknown, frequently occurring patterns in time series or approximately repeated subsequences that are very similar to each other. There are two issues in time series motifs discovery, the deficiency of the definition of K-motifs given by Lin et al. (2002) and the large computation time for extracting motifs. In this paper, we propose a relatively comprehensive definition of K-motifs to obtain more valuable motifs. To minimize the computation time as much as possible, we extend the triangular inequality pruning method to avoid unnecessary operations and calculations, and propose an optimized matrix structure to produce the candidate motifs almost immediately. Results of two experiments on three time series datasets show that our motifs discovery algorithm is feasible and efficient.
Key words: Time series motifs    Definition of K-motifs    Optimized matrix structure    Fast pruning method
收稿日期: 2011-02-16 出版日期: 2011-11-30
CLC:  TP391.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Lian-hua Chi
He-hua Chi
Yu-cai Feng
Shu-liang Wang
Zhong-sheng Cao

引用本文:

Lian-hua Chi, He-hua Chi, Yu-cai Feng, Shu-liang Wang, Zhong-sheng Cao. Comprehensive and efficient discovery of time series motifs. Front. Inform. Technol. Electron. Eng., 2011, 12(12): 1000-1009.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1100037        http://www.zjujournals.com/xueshu/fitee/CN/Y2011/V12/I12/1000

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[4] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Xiao-fang Huang, Shou-qian Sun, Ke-jun Zhang, Tian-ning Xu, Jian-feng Wu, Bin Zhu. 一种皮影人物建模及动画生成方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 367-379.
[15] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.