Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (5): 367-379    DOI: 10.1631/FITEE.1400351
    
一种皮影人物建模及动画生成方法
Xiao-fang Huang, Shou-qian Sun, Ke-jun Zhang, Tian-ning Xu, Jian-feng Wu, Bin Zhu
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; School of Art, Zhejiang University of Technology, Hangzhou 310023, China; College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China
A method of shadow puppet figure modeling and animation
Xiao-fang Huang, Shou-qian Sun, Ke-jun Zhang, Tian-ning Xu, Jian-feng Wu, Bin Zhu
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; School of Art, Zhejiang University of Technology, Hangzhou 310023, China; College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China
 全文: PDF 
摘要: 目的:建立基于真实人体数据的皮影人物模型并生成动画来促进皮影艺术发展。
创新点:本文使用三维人体扫描数据来建立皮影人物模型,并生成动画。
方法:通过研究分析皮影艺术现状,提出一种通过获取三维人体扫描数据来建立皮影人物并生成动画的方法。二维皮影人物的建模过程(图1)如下:第一步,自动定位三维人体模型特征点,并且根据定位的特征点将人体模型自动分段(图8);第二步,提取皮影人物的初始轮廓(图11),并进行二维数据处理;第三步,对数据处理后的初始皮影人物(图13)进行自动服饰匹配(图14、15),生成二维皮影人物及动画(图17-19)。最后通过比较实验前后被试者对皮影的兴趣度,来验证该方法的有效性。
结论:针对人们对皮影艺术逐渐失去兴趣的现状,提出一种基于三维人体扫描数据的皮影人物建模方法。实验证明,该方法可以生成更多具有真实感、引人入胜的皮影人物和实时动画。该研究促进了皮影艺术的发展,尤其是在现代皮影动画和个性化定制方面。
关键词: 皮影艺术皮影人物三维人体数据处理二维建模    
Abstract: To promote the development of the intangible cultural heritage of the world, shadow play, many studies have focused on shadow puppet modeling and interaction. Most of the shadow puppet figures are still imaginary, spread by ancients, or carved and painted by shadow puppet artists, without consideration of real dimensions or the appearance of human bodies. This study proposes an algorithm to transform 3D human models to 2D puppet figures for shadow puppets, including automatic location of feature points, automatic segmentation of 3D models, automatic extraction of 2D contours, automatic clothes matching, and animation. Experiment proves that more realistic and attractive figures and animations of the shadow puppet can be generated in real time with this algorithm.
Key words: Shadow play    Shadow puppet figure    3D human body    Data processing    2D modeling
收稿日期: 2014-10-15 出版日期: 2015-05-05
CLC:  TP391.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Xiao-fang Huang
Shou-qian Sun
Ke-jun Zhang
Tian-ning Xu
Jian-feng Wu
Bin Zhu

引用本文:

Xiao-fang Huang, Shou-qian Sun, Ke-jun Zhang, Tian-ning Xu, Jian-feng Wu, Bin Zhu. A method of shadow puppet figure modeling and animation. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 367-379.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400351        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I5/367

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[4] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.
[15] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.