Please wait a minute...
浙江大学学报(工学版)
化学工程     
MW燃煤电厂钒钛系脱硝催化剂失活原因分析
陈艳萍1,吴思明1, 2,卢慧剑1,魏博伦1,何奕1,施耀1
1. 浙江大学 化学工程与生物工程学系,工业生态与环境研究所,浙江 杭州 310027;2.国电浙江北仑第一发电有限公司,浙江 宁波 315800
Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant
CHEN Yan-ping1, WU Si-ming1,2, LU Hui-jian1, WEI Bo-lun1, HE Yi1, SHI Yao1
1. Department of Chemical and Biological Engineering, Industrial Ecology and Environment Research Institute,Zhejiang University, Hangzhou 310027, China;2. Guodian Zhejiang Beilun No.1 Power Gereration Co.LTD, Ningbo 315800, China
 全文: PDF(1523 KB)  
摘要:

以某燃煤电厂1 000 MW发电机组选择性催化还原(SCR)装置使用前和运行25 000 h后的烟气脱硝催化剂为研究对象,对催化剂进行脱硝活性测试,同时应用扫描电镜(SEM)、X射线衍射(XRD)分析、比表面积和孔容(BET)分析、X射线荧光光谱(XRF)分析、傅里叶红外(FT-IR)和X射线光电子能谱(XPS)分析进行表征分析,探讨催化剂失活机制.结果表明: 活性检测375 ℃下运行后催化剂的脱硝效率(46%)和比表面积(40 m2/g)相对于新鲜催化剂(84%,49 m2/g)都有所下降,同时表面的活性钒V5+和化学吸附氧Oα由56%和34%分别下降至46%和24%,并且有大量盐类沉积及少量活性组分的损失,SEM和XRD的结果表明运行后催化剂表面存在严重烧结现象.因此,催化剂表面的烧结、还原能力的下降、盐类沉积以及活性组分的挥发都与催化剂活性下降有关.

关键词:  选择性催化还原表面性质脱硝催化剂失活机理燃煤电厂    
Abstract:

The  fresh and used catalyst(25 000 h)samples which are both from selective catalytic reduction(SCR) equipment of a 1 000 MW coal-fired power plant were examined and  characterized by means of scanning electron microscope (SEM) X-ray diffraction (XRD),brunauer, emmett and telle(BET), X-ray fluorescence (XRF), Fourier transform infra-red (XPS) and X-ray photoelectron spectroscopy (XPS), and the influencing  factors causing catalyst deactivation were explored. The  deNOx activity (84%) at 375 ℃ and the specific surface area(49 m2/g)of the fresh catalyst were a little more than those of the used catalyst (46% , 40 m2/g ). The activity vanadium V5+ and surface chemisorbed oxygen Oα contents in the used catalyst were respectively increased from 46% and 24% to 56% and 34% compared to the fresh one, and large quantities of sulfates deposited on the surface as well as the volatilization of active ingredients was also found. Moreover, the results of SEM and XRD showed that the thermal sintering occurred on the surface of the used catalyst. Consequently, the V2O5-WO3/TiO2 catalyst deactivation could be attributed to the valence change of V and W atom, thermal sintering, impurities in deposit, and the decreasing of the specific surface area.

Key words: denitration catalyst    deactivation mechanism    surface property    coal-fired power plant    selective catalytic reduction
出版日期: 2015-04-12
:  X 511  
基金资助:

浙江省自然科学基金资助项目(LZ12E08002)

通讯作者: 施耀,男,教授     E-mail: shiyao@zju.edu.cn
作者简介: 陈艳萍(1987-),女,硕士生,从事燃煤燃气与脱硝催化剂的活性评价与再生研究.E-mail:aiyacheny@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈艳萍
吴思明
卢慧剑
魏博伦
施耀
何奕

引用本文:

陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.0231 000.

CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.0231 000.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2015.03.0231 000        http://www.zjujournals.com/xueshu/eng/CN/Y2015/V49/I3/564

[1] TIAN H Z,LIU K Y,HAO J M,et al. Nitrogen oxides emissions from thermal power plants in China∶current status and future predictions[J].Environmental Science and Technology,2013,47(17):11350-11357.
[2] 云端,宋蔷,姚强. V2O5 -WO3 / TiO2 SCR 催化失活机理及分析[J]. 煤炭转化,2009,32(1):91-96.
YUN Duan,SONG Qiang,YAO Qiang. Mechanism and analysis of SCR catalyst deactivation[J]. Coal Conversion,2009,32(1):91-96.
[3] 姜烨,高翔,杜学森,等. 钾盐对V2O5 / TiO2 催化剂NH3 选择性催化还原NO 反应的影响[J]. 中国电机工程学报,2008,28(5):21-26.
JIANG Ye,GAO Xiang,DU Xue-sen,et al. Effects of potassium salts on selective catalytic reduction of NO with NH3 over V2O5/TiO2 catalysts[J]. Proceedings of the CSEE,2008,28(5):21-26.
[4] TANG Fu-shun,XU Bo-lian,SHI Hai-hua,et al. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3[J]. Applied Catalyst B,2010,94(10):71-76.
[5] 商雪松,陈进生,赵金平,等. SCR 脱硝催化剂失活及其原因研究[J]. 燃料化学学报,2011,39(6):465-470.
SHANG Xue-song,CHEN Jin-sheng,ZHAO Jin-ping,et al. Discussion on the deactivation of SCR denitrification catalyst and its reasons[J]. Journal of Fuel Chemistry and Technology,2011,39(6):465-470.
[6] 张烨,徐晓亮,缪明烽. SCR脱硝催化剂失活机理研究进展[J]. 能源环境保护,2011,25(4):14-18.
ZHANG Ye,XU Xiao-liang,MIU Ming-feng. Advance in deactivation mechanism for SCR denitration catalyst [J]. Energy Environmental Protection,2011,25(4):14-18.
[7] 沈伯雄,熊丽仙,刘亭,等. 纳米负载型V2O5 -WO3 / TiO2 催化剂碱中毒及再生研究[J]. 燃料化学学报,2010,38(1):85-90.
SHEN Bo-xiong,XIONG Li-xian, LIU Ting,et al. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology,2010,38(1):85-90.
[8] 王春霞,叶志平,吕力行,等. 烟气脱硝催化剂中载体TiO2对催化性能的影响[J].高校化学工程学报,2013,27(5):896-902.
WANG Chun-xia, YE Zhi-ping, LV Li-xing, et al. Influence of TiO2-Supports on the catalytic properties of catalysts for De-NOx in flue gas[J]. Journal of Chemical Engineering of Chinese Universities, 2013,27(5):896-902.
[9] 朱崇兵,金保升,仲兆平,等. V2O5-WO3/TiO2烟气脱硝催化剂的载体选择[J]. 中国电机工程学报,2008,28(11):41-47.
ZHU Chong-bin, JIN Bao-sheng, ZHONG Zhao-ping, et al. Selection of carrier for V2O5-WO3/TiO2 De-NOx ctalyst[J]. Proceedings of the CSEE, 2008,28(11):41-47.
[10] 宋晋. 微波-乙醇溶液辅助V2O5-WO3/TiO2 SCR催化剂再生试验研究[D]. 杭州:浙江大学,2014:30-40.
SONG Jin. Study on the microwave-ethanol assisted regeneration of V2O5- WO3/ TiO2 SCR catalyst[D].Hangzhou: Zhejiang University,2014:30-40.
[11] ZHENG Yuan-jing,JENSEN A D,JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B:Environmental,2005,60(3):253-264.
[12] 云端,邓斯理,宋蔷,等. V2O5-WO3/TiO2系 SCR催化剂的钾中毒及再生方法[J]. 环境科学研究,2009,22(6):730-735.
YUN Duan,DENG Si-li,SONG Qiang,et al. Potassium Deactivation and regeneration Method of V2O5-WO3/TiO2 SCR Catalyst[J]. Research of Environmental Science, 2009,22(6):730-735.
[13] 姜烨,高翔,吴卫红,等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报,2013,33(14):18-31.
GAO Ye,GAO Xiang,WU Wei-hong,et al. Review of the deactivation of selective catalytic reduction deNOx catalysts[J]. Proceedings of the CSEE,2013,33(14):18-31.
[14] KAMATA H, TAKAHASHI K, ODENBRAND C U I. The role of K2O in the selective reduction of NO with NH3 ver a V2O5-WO3/TiO2 commercial selective catalytic reduction catalyst[J]. Journal of Molecular Catalysis A:Chemical, 1999,139(18):189-198.
[15] 崔力文. V2O5-WO3/TiO2 SCR催化剂再生试验研究[D]. 杭州:浙江大学,2012: 26-46.
CUI Li-wen. Study on the regeneration of V2O5-WO3/TiO2 SCR catalyst[D]. Hangzhou: Zhejiang University, 2012:26-46.
[16] KHODAYARI R,ODENBRAND C U I.Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity[J]. Applied Catalysis B:Environment,2001,33(3):277-291.
[17] 于艳科,何炽, 陈进生,等. 电厂烟气脱硝催化V2 O5-WO3 / TiO2 失活机理研究[J]. 燃料化学学报,2012,40(11): 1359-1365.
YU Yan-ke, HE Chi,CHEN Jin-sheng,et al. Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant[J]. Journal of Fuel Chemistry and Technology,2012,40(11): 1359-1365.
[18] 陈建军,李俊华,柯锐,等. 钒和钨负载量对V2O5-WO3/TiO2表面形态及催化性能的影响[J]. 环境科学,2007,28(9):1949-1953.
CHEN Jian-jun,LI Jun-hua,KE Rui,et al. Effect of Vanadium and tungsten loadings on the surface characteristics and catalytic activities of V2O5-WO3/TiO2 catalysts[J]. Environmental Science,2007,28(9):1949-1953.
[19] TOPSE N Y,DUMESIC J A,TOPSE H.Vanadia/Titania Catalysts for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of Catalysis,1995,6(12):241-252.
[20] CHEN Liang,LI Jun-hua,GE Mao-fa. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal,2011,170(11):531-537.

[1] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[2] 任迪, 万健, 殷昱煜, 周丽, 高敏. 基于贝叶斯分类的Web服务质量预测方法研究[J]. 浙江大学学报(工学版), 2017, 51(6): 1242-1251.
[3] 宋瑞祥, 张庆国, 于海敬, 徐丽, 施悯悯. 遥感数据的城市不透水面估算及增温效应[J]. 浙江大学学报(工学版), 2017, 51(5): 1051-1056.
[4] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[5] 蒋鑫龙, 陈益强, 刘军发, 忽丽莎, 沈建飞. 面向自闭症患者社交距离认知的可穿戴系统[J]. 浙江大学学报(工学版), 2017, 51(4): 637-647.
[6] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[7] 张捷, 肖新标, 王瑞乾, 金学松. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版), 2017, 51(3): 545-553.
[8] 李晓东, 祝跃飞, 刘胜利, 肖睿卿. 基于权限的Android应用程序安全审计方法[J]. 浙江大学学报(工学版), 2017, 51(3): 590-597.
[9] 苏星, 王慧泉, 金仲和. 实时高可靠综合电子系统的逻辑架构设计[J]. 浙江大学学报(工学版), 2017, 51(3): 628-636.
[10] 杨航, 郑成航, 金侃, 张军, 张涌新, 翁卫国,吴学成, 高翔. 燃煤电厂选择性催化还原脱硝系统运行成本[J]. 浙江大学学报(工学版), 2017, 51(2): 363-369.
[11] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[12] 张伟, 胡友德, 郑立荣. 基于频率可调驻波振荡器的芯片时钟系统设计[J]. 浙江大学学报(工学版), 2017, 51(1): 168-176.
[13] 谢罗峰, 徐慧宁, 黄沁元, 赵越, 殷国富. 应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷[J]. 浙江大学学报(工学版), 2017, 51(1): 184-191.
[14] 刘海宾, 王勇, 马鹏磊, 谢玉东. 基于平行式振荡翼系统参数耦合分析[J]. 浙江大学学报(工学版), 2017, 51(1): 153-159.
[15] 厉文榜,方梦祥,岑建孟,肖平,时正海,山石泉,王勤辉,骆仲泱. K-Fe复合催化剂对煤半焦气化速率与产物的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1746-1751.