Please wait a minute...
浙江大学学报(工学版)
土木工程     
饱和土体中衬砌隧道在移动荷载下的动力响应
曾晨1,2,孙宏磊1,2,蔡袁强1,2,3,曹志刚1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058;2. 浙江大学 软弱土与环境土工教育部重点实验室, 浙江 杭州 310058;3. 温州大学 建筑与土木工程学院,浙江 温州 325035
Dynamic response of  lined tunnel in saturated soil due to  moving load
ZENG Chen1, 2, SUN Hong-lei1, 2, CAI Yuan-qiang1, 2, 3, CAO Zhi-gang1, 2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 3. College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China
 全文: PDF(1046 KB)  
摘要:

为了研究移动点荷载作用下饱和土体全空间中圆形衬砌隧道的三维动力响应,采用解析方法进行求解.用无限长圆柱壳模拟衬砌,用Biot饱和多孔介质模型模拟土体.引入两类势函数表示土骨架和孔隙水的位移,在不同环向模态下利用修正Bessel方程求解各势函数.结合边界条件,得到频率-波数域内衬砌和土骨架位移、孔隙水压力的解答.对各模态下的解答求和,并进行双重Fourier逆变换得到时间-空间域内的动力响应.通过算例分析荷载速度、土体渗透性等对位移及土体孔压的影响.结果表明:饱和土体中衬砌隧道系统存在临界速度,该速度与土体剪切波波速很接近;位移场和孔压场分布受荷载速度、土体渗透性影响较大;随着土体渗透性增大,土体孔压减小;高速荷载时的位移响应频谱与低速荷载时的差别很大.

关键词: 移动点荷载饱和土动力响应衬砌隧道    
Abstract:

An analytical method was presented  to investigate the three-dimensional dynamic response of a lined circular tunnel in a full-space saturated poroelastic soil due to a moving pointload. The lining is modeled as a thin cylindrical shell of infinite length, and the soil is modeled as a saturated poroelastic medium using Biots theory. Two kinds of potentials are introduced to express the displacements of  soil skeleton and  pore fluid, and the modified Bessel equations are employed to obtain the expressions of the potentials for different values of circumferential modenumber. According to boundary conditions, the analytical solutions of the displacements of lining and soil skeleton and the excess pore fluid pressure are obtained in frequency-wavenumber domain. Finally, the time-space domain solutions of the dynamic responses are obtained by operating double inverse Fourier transformation to the sum of all the modal components. The effects of load speed and soil permeability on displacement and pore pressure responses are investigated through the numerical results. The existence of critical speed of the lined tunnel in saturated poroelastic soil is demonstrated, and the critical speed is quite close to the shear wave velocity of the soil. The displacement field and the pore pressure field are greatly influenced by the load velocity  and soil permeability. The pore pressure of soil decreases when the soil permeability gets better. The frequency spectrum of the displacement response due to a high speed load is quite different from those due to a low speed load.

Key words: lined tunnel    dynamic response    moving point load    saturated soil
出版日期: 2015-04-12
:  TU 435  
基金资助:

国家杰出青年科学基金资助项目(51025827);国家自然科学基金青年科学基金资助项目(51108414,51208460);高等学校博士学科点专项科研基金资助项目(20110101120034,20130101110028)

通讯作者: 孙宏磊,男,副教授     E-mail: sunhonglei@zju.edu.cn
作者简介: 曾晨(1986-),男,博士生,从事土体动力学研究.E-mail: zc860207@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙宏磊
蔡袁强
曹志刚
曾晨

引用本文:

曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.017.

ZENG Chen, SUN Hong-lei, CAI Yuan-qiang, CAO Zhi-gang. Dynamic response of  lined tunnel in saturated soil due to  moving load. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.017.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2015.03.017        http://www.zjujournals.com/xueshu/eng/CN/Y2015/V49/I3/511

[1] BALENDRA T, CHUA K H, LO K W, et al. Steady-state vibration of subway-soil-building system [J]. Journal of Engineering Mechanics, 1989, 115(1): 145-162.
[2] GARDIEN W, STUIT H G. Modelling of soil vibrations from railway tunnels [J]. Journal of Sound and Vibration, 2003, 267(3): 605-619.
[3] SHENG X, JONES C J C, THOMPSON D J. Ground vibration generated by a harmonic load moving in a circular tunnel in a layered ground [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2003, 22(2): 83-96.
[4] FORREST J A, HUNT H E M. A three-dimensional tunnel model for calculation of train-induced ground vibration [J]. Journal of Sound and Vibration, 2006, 294(4): 678-705.
[5] FORREST J A, HUNT H E M. Ground vibration generated by trains in underground tunnels [J]. Journal of Sound and Vibration, 2006, 294(4): 706-736.
[6] CLOUTEAU D, ARNST M., AL-HUSSAINI T M, et al. Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium [J]. Journal of Sound and Vibration, 2005, 283(1/2): 173-199.
[7] GUPTA S, HUSSEIN M F M, DEGRANDE G, et al. A comparison of two numerical models for the prediction of vibrations from underground railway traffic [J]. Soil Dynamics and Earthquake Engineering, 2007, 27(7): 608-624.
[8] 刘维宁, 夏禾, 郭文军. 地铁列车振动的环境响应[J]. 岩石力学与工程学报, 1996, 15(增刊): 586-593.
LIU Wei-ning, XIA He, GUO Wen-jun. Study of vibration effects of underground trains on surrounding environments [J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(S): 586-593.
[9] 谢伟平, 孙洪刚. 地铁运行时引起的土的波动分析[J]. 岩石力学与工程学报, 2003, 22(7): 1180-1184.
XIE Wei-ping, SUN Hong-gang. FEM analysis on wave propagation in soils induced by high speed train loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1180-1184.
[10] BIAN X C, JIN W F, JIANG H G. Ground-borne vibrations due to dynamic loadings from moving trains in subway tunnels [J]. Journal of Zhejiang University- SCIENCE A:Applied Physics and Engineering, 2012, 13(11): 870-876.
[11] CAI Y Q, CAO Z G, SUN H L, et al. Dynamic response of pavements on poroelastic half-space soil medium to a moving traffic load [J]. Computers and Geotechnics, 2009, 36(1/2): 52-60.
[12] SENJUNTICHAI T, RAJAPAKSE R K N D. Transient response of a circular cavity in a poroelastic medium [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(6): 357-383.
[13] HASHEMINEJAD S M, KOMEILI M. Effect of imperfect bonding on axisymmetric elastodynamic response of a lined circular tunnel in poroelastic soil due to a moving ring load [J]. International Journal of Solids and Structures, 2009, 46(2): 398-411.
[14] 刘干斌, 谢康和, 施祖元. 黏弹性饱和多孔介质中圆柱孔洞的频域响应[J]. 力学学报, 2004, 36(5): 557-563.
LIU Gan-bin, XIE Kang-he, SHI Zu-yuan. Frequency response of a cylindrical cavity in poro-viscoelastic saturated medium [J]. Acta Mechanica Sinica, 2004, 36(5): 557-563.
[15] LU J F, JENG D S. Dynamic response of a circular tunnel embedded in a saturated poroelastic medium due to a moving load [J]. Journal of Vibration and Acoustics, 2006, 128(6): 750-756.
[16] 黄晓吉, 扶名福, 徐斌. 移动环形荷载作用下饱和土中圆形衬砌隧洞动力响应研究[J]. 岩土力学, 2012, 33(3): 892-898.
HUANG Xiao-ji, FU Ming-fu, XU Bin. Dynamic response of a circular lining tunnel in saturated soil due to moving ring load [J]. Rock and Soil Mechanics, 2012, 33(3): 892898.
[17] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range [J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
[18] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High-frequency range [J]. Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
[19] FLGGE W. Stresses in Shells (second edition) [M]. Berlin: Springer, 1973.
[20] JONES S, HUNT H. Voids at the tunnel-soil interface for calculation of ground vibration from underground railways [J]. Journal of Sound and Vibration, 2011, 330(2): 245-270.
[21] SHI L, SUN H L, CAI Y Q, et al. Validity of fully drained, fully undrained and u-p formulations for modeling a poroelastic half-space under a moving harmonic point load [J]. Soil Dynamics and Earthquake Engineering, 2012, 42: 292-301.
[22] SENJUNTICHAI T, MANI S, RAJAPAKSE R K N D. Vertical vibration of an embedded rigid foundation in a poroelastic soil [J]. Soil Dynamics and Earthquake Engineering, 2006, 26(6/7): 626-636.

[1] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[2] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[3] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.
[4] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[5] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[6] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[7] 史吏, 蔡袁强, 潘晓东. 列车加减速引起轨道结构和饱和地基振动[J]. J4, 2013, 47(11): 1932-1938.
[8] 王奎华,吴文兵,马少俊,马伯宁. 嵌岩桩沉渣特性对桩顶动力响应的影响[J]. J4, 2012, 46(3): 402-408.
[9] 蔡袁强,陈成振,孙宏磊. 黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J]. J4, 2011, 45(9): 1657-1663.
[10] 王振宇,梁旭,刘国华,程围峰. 水下爆破荷载作用下简支Kirchhoff板的积分变换解[J]. J4, 2011, 45(11): 1972-1979.
[11] 杨冬英, 王奎华. 非均质土中基于虚土桩法的桩基纵向振动[J]. J4, 2010, 44(10): 2021-2028.
[12] 高广运, 何俊锋, 李佳. 地铁运行引起的饱和地基动力响应[J]. J4, 2010, 44(10): 1925-1930.
[13] 项贻强, 孙筠. 深层混凝土搭板处治路桥过渡段的动力响应[J]. J4, 2010, 44(10): 1863-1869.
[14] 苏万鑫, 谢康和. 土水特征曲线为直线的非饱和土一维固结计算[J]. J4, 2010, 44(1): 150-155.
[15] 吴瑞潜, 谢康和, 程永锋. 变荷载下饱和土一维热固结解析理论[J]. J4, 2009, 43(8): 1532-1537.