Please wait a minute...
浙江大学学报(工学版)
计算机技术﹑电信技术     
仿生六足机器人传感信息处理及全方向运动控制
陈伟海,刘涛,王建华,任冠佼,吴星明
北京航空航天大学 自动化科学与电气工程学院,北京 100191
Sensor signal processing and omnidirectional locomotion control of a bio-inspired hexapod robot
CHEN Wei-hai, LIU Tao, WANG Jian-hua, REN Guan-jiao, WU Xing-ming
School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
 全文: PDF(2192 KB)  
摘要:

针对传统CPG控制方法无法很好地控制机器人足端轨迹的问题,提出基于中枢神经模式发生器(CPG)的控制方法.在CPG控制方法中加入用于足端轨迹控制的轨迹发生器模块,通过调节参数值可以实现机器人的全方向运动控制.为降低传统CPG控制中传感信息反馈以及参数调整的复杂程度,设计2种用于躲避前方和两侧障碍物的传感信号处理的神经网络.该模块实现多传感信号的融合,生成用以控制机器人运动行为的各个参数值,实现机器人的自主避障.设计一个仿生六足机器人样机,将其分别放置在墙角和狭窄空间中进行自主避障行走实验,结果证明了机器人全方向运动控制算法和自主避障算法的可行性.

关键词: 仿生六足机器人运动控制中枢神经模式发生器传感信息    
Abstract:

Control method based on a central pattern generator (CPG) was proposed to deal with the issue of intelligent locomotion control of bio-inspired hexapod robots. The traditional CPG-based control was unable to control the foot trajectory of robots. For the proposed CPG control method, trajectory generators were added to the control scheme to control  foot trajectory. Thus,  omnidirectional walking control could be realized by simply adjusting the value of control parameters. Two artificial neural networks for sensor signal processing were developed to overcome complexity in sensory feedback and parameter tuning in CPG control. The neural networks accomplished the fusion of multi-sensory signals, generating the values of the control parameters for robot behavior control. In this way, the robot realized autonomous obstacle-avoiding. A hexapod robot prototype was designed to conduct two real robot experiments in different situations. The experimental results proved that  the effectiveness of proposed omnidirectional locomotion control algorithm and obstacle-avoiding algorithm.

Key words: locomotion control    central pattern generator    bio-inspired hexapod robot    sensor signal
出版日期: 2015-04-12
:  TP 242  
基金资助:

国家自然科学基金资助项目(61175108);北京市自然科学基金资助项目(4142033).

作者简介: 陈伟海(1955-),男,教授,博导,从事仿生机器人技术、机器人视觉技术及其应用研究.E-mail:whchenbuaa@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘涛
任冠佼
王建华
陈伟海
吴星明

引用本文:

陈伟海,刘涛,王建华,任冠佼,吴星明. 仿生六足机器人传感信息处理及全方向运动控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.006.

CHEN Wei-hai, LIU Tao, WANG Jian-hua, REN Guan-jiao, WU Xing-ming. Sensor signal processing and omnidirectional locomotion control of a bio-inspired hexapod robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.006.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2015.03.006        http://www.zjujournals.com/xueshu/eng/CN/Y2015/V49/I3/430

[1] 王田苗, 孟偲, 裴葆青, 等. 仿壁虎机器人研究综述[J]. 机器人, 2007, 29(3): 290-297.
WANG Tian-miao, MENG Cai, PEI Bao-qing, et al. Summary on gecko robot research [J]. Robot, 2007, 29(3): 290-297.
[2] RITZMANN R E, QUINN R D, FISCHER M S. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots[J]. Arthropod Structure and Development, 2004, 33(3): 361-379.
[3] DELCOMYN F, NELSON M E, COCATRE-ZILGIEN J H. Sense organs of insect legs and the selection of sensors for agile walking robots [J]. The International Journal of Robotics Research, 1996, 15(2): 113-127.
[4] GO Y, YIN X, BOWLING A. Navigability of multi-legged robots [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(1): 18.
[5] SCHILLING M, HOINVILLE T, SCHMITZ J, et al. Walknet, a bio-inspired controller for hexapod walking [J]. Biological Cybernetics, 2013, 107(4): 397-419.
[6] SCHILLING M, CRUSE H, ARENA P. Hexapod walking: an expansion to Walknet dealing with leg amputations and force oscillations [J]. Biological Cybernetics, 2007, 96(3): 323-340.
[7] IJSPEERT A J. Central pattern generators for locomotion control in animals and robots: a review [J]. Neural Networks, 2008, 21(4): 642-653.
[8] KIMURA H, FUKUOKA Y, COHEN A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts [J]. The International Journal of Robotics Research, 2007, 26(5): 475-490.
[9] 吴启迪, 刘成菊, 张家奇, 等. 生物诱导的机器人行走控制研究进展[J]. 中国科学F辑:信息科学, 2009, 39(10): 1080-1094.
WU Qi-di,LIU Cheng-ju,ZHANG Jia-qi,et al. Researh progress of robot driving control based on biological induction [J]. Science in China:Series F:Information Sciences, 2009, 39(10): 1080-1094.
[10] 黄博, 姚玉峰, 孙立宁. 基于中枢神经模式的四足机器人步态控制[J]. 机械工程学报, 2010, 46(7): 16.
HUANG Bo, YAO Yu-feng, SUN Li-ning. Quadruped robot gait control based on central pattern generator [J]. Journal of Mechanical Engineering, 2010, 46(7): 16.
[11] LIU C J, WANG D W, CHEN Q J. Central pattern generator inspired control for adaptive walking of biped robots [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(5): 1206-1215.
[12] LIU C J, CHEN Q J, WANG G X. Adaptive walking control of quadruped robots based on central pattern generator (CPG) and reflex [J]. Journal of Control Theory and Applications, 2013, 11(3): 386-392.
[13] ZHANG X L, E M C, ZENG X Y, et al. Adaptive walking of a quadrupedal robot based on layered biological reflexes [J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 654-664.
[14] WANG M, YU J Z, TAN M, et al. A CPG-based sensory feedback control method for robotic fish locomotion [C] ∥ Control Conference (CCC), 2011 30th Chinese. Shangdong: IEEE, 2011: 4115-4120.
[15] ZHANG D B, HU D W, SHEN L C, et al. Design of a central pattern generator for bionic-robot joint with angular frequency modulation [C] ∥ 2006 IEEE International Conference on Robotics and Biomimetics. Kunming:IEEE,2006: 1664-1669.
[16] STEINGRUBE S, TIMME M, WOERGOETTER F, et al. Self-organized adaptation of a simple neural circuit enables complex robot behavior [J]. Nature Physics, 2010, 6(3): 224-230.
[17] REN G J, CHEN W H, KOLODZIEJSKI C, et al. Multiple chaotic central pattern generators for locomotion generation and leg damage compensation in a hexapod robot [C] ∥ Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura-Algarve:IEEE, 2012: 2756-2761.
[18] DONNER M D. Real-time control of walking [M]. Boston:Birkhauser, 1987: 10-11.
[19] REN G J, CHEN W H, WANG J H, et al. Neural pattern generation and kinematics calculation for a hexapod robots adaptive locomotion control [C] ∥ Proceedings of the 3rd IFToMM International Symposium on Robotics and Mechatronics.  Singapore: Nanyang Technological University Research Publishing, 2013: 545-555.
[20] MONDADA F, FRANZI E, IENNE P. Mobile robot miniaturisation: A tool for investigation in control algorithms [M] . Berlin Heidelberg:Springer,1994: 501-513.
[21] PASEMANN F, HULSE M, ZAHEDI K. Evolved neurodynamics for robot control[C] ∥ European Symposium on Artificial Neural Networks(ESANN).Bruges, Belgium:Evere, 2003: 439-444.
[22] HUELSE M, PASEMANN F. Dynamical neural schmitt trigger for robot control [C] ∥ Proceedings of Artificial Neural Networks. New York: Springer, 2002: 783-788.

[1] 王会方, 朱世强, 吴文祥. 谐波驱动伺服系统的改进自适应鲁棒控制[J]. J4, 2012, 46(10): 1757-1763.