Please wait a minute...
浙江大学学报(工学版)
水利工程、土木工程     
四面六边透水框架防护层稳定性试验
丁兵1,2, 刘同宦1,2, 雷文韬1,2, 李最森3,4
1. 长江科学院河流研究所,湖北 武汉 430010;2. 水利部江湖治理与防洪重点实验室,湖北 武汉430010;3;浙江省水利河口研究院, 浙江 杭州 310020;4. 浙江省河口海岸重点实验室,浙江 杭州 310020
Experimental research on stability of tetrahedral frames layer
DING Bing1,2, LIU Tong-huan1,2, LEI Wen-tao1,2, LI Zui-sen3,4
1. River Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; 2. Key Laboratory of River-Lake Harnessing and Flood Control of Ministry of Water Resources, Wuhan 430010, China; 3. Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China; 4. Key Laboratory of
Estuary and Coast of Zhejiang Province, Hangzhou 310020, China
 全文: PDF(1165 KB)  
摘要:

通过破坏性试验和冲淤水槽试验,对四面六边透水框架防护措施的稳定性进行研究.破坏性试验研究防护层破坏发展过程和破坏临界条件下来流摩阻流速与防护层参数之间的关系,冲淤试验研究防护层附近床面的冲淤变化特性.结果表明,防护层的稳定性与其布置形式及参数有关.流线型迎流面有利于框架群稳定.破坏临界条件下,来流摩阻流速与框架群密度呈正相关关系;且随来流水深与框架群厚度比值的增大先增大后趋向定值,分界点比值约为4.相对于实心体边缘的集中淘刷,框架群表现出“冲刷后移”现象,对边缘处的稳定相当有利;框架群内部产生的淤积现象亦增加稳定性,建议将防护对象置于框架群内部淤积区域,以达到更好的防护效果.

关键词: 冲刷及防护稳定性冲淤特性四面六边透水框架    
Abstract:

A flow-altering armoring countermeasure device, frames in the shape of tetrahedrons, was tested by destructive tests and scour tests in a laboratory flume. Destruction development process and relationship between the friction velocity and layer parameters in critical destabilization condition of tetrahedral frames were investigated by destructive tests. Erosion and deposition characteristics near the frames were studied by scour tests. The destructive tests show that the frames stabilities are associated with layout form and parameters. The streamlined arrangement may be good for the frames stabilities. Under critical destabilization condition, friction velocity increases with increasing the layout-density of frames. As the ratio of flow-depth to frame-layer-thickness increases, the friction velocity increases and then becomes stable when the ratio is larger than 4. The scour tests indicate that unlike the riprap layer, the scour positions are moved backward in the edges of frames. The above phenomena and sedimentation inside the frames are conducive to frames stabilities. The protected object could be placed in this sedimentation area to achieve better protective effect. 

Key words: erosion and deposition characteristics    scour and protection    tetrahedral frames    stability
出版日期: 2015-02-17
:  TV 86  
基金资助:

中央级公益性科研院所基本科研业务费资助项目(CKSF2014014/HL,CKSF2014015/HL);国家自然科学青年基金资助项目(51209016,51109188)

通讯作者: 李最森,男,高级工程师     E-mail: lizuisen@hotmail.com
作者简介: 丁兵(1981—),男,博士,工程师,从事水力学及河流动力学方面研究.E-mail: 121315117@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁兵
雷文韬
刘同宦
李最森

引用本文:

丁兵, 刘同宦, 雷文韬, 李最森. 四面六边透水框架防护层稳定性试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.02.009.

DING Bing, LIU Tong-huan, LEI Wen-tao, LI Zui-sen. Experimental research on stability of tetrahedral frames layer. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.02.009.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2015.02.009        http://www.zjujournals.com/xueshu/eng/CN/Y2015/V49/I2/251

[1] CHIEW Y M. Mechanics of riprap failure at bridge piers [J]. Journal of Hydraulic Engineering, 1995, 121(9): 635-643.
[2] CHIEW Y M, LIM F H. Failure behavior of riprap layer at bridge piers under live-bed conditions [J]. Journal of Hydraulic Engineering, 2000, 126(1): 43-55.
[3] LAUCHLAN C S, MELVILLE B W. Riprap protection at bridge piers [J]. Journal of Hydraulic Engineering, 2001, 127(5): 412-418.
[4] POSEY C J. Test of Scour Protection at Bridge Piers [J]. Journal of Hydraulic Engineering, 2004, 110 (12): 1173-1183.
[5] 高正荣,黄建维,卢中一.长江河口跨江大桥桥墩局部冲刷及防护研究[M].北京:海洋出版社,2005: 99-104.
[6] 周根娣,顾正华,高柱,等.四面六边透水框架尾流场水力特性[J].长江科学院院报,2005,22(3):9-12.
ZHOU Gen-di, GU Zheng-hua, GAO Zhu, et al. Hydraulic characteristics of tetrahedron-like penetrating frame wake [J]. Journal of Yangtze River Scientific Research Institute, 2005, 22(3): 9-12.
[7] 吴龙华,周春天,严忠民,等.架空率、杆件长宽比对四面六边透水框架群减速促淤效果的影响[J].水利水运工程学报,2003,9(3):74-77.
WU Long-hua, ZHOU Chun-tian, YAN Zhong-ming, et al. Effects of overhead ratio and poles length-width ratio on deceleration and accretion promotion of tetrahedron-like penetrating frames [J]. Hydro-science and Engineering,2003,9(3):74-77.
[8] 吴龙华.透空四面体(群)尾流水力特性及应用研究[D].南京:河海大学,2006: 52-118.
WU Long-hua. Study on hydraulic characteristics of wake stream of permeable tetrahedron(s) and application [D]. Nanjing: Hohai University, 2006: 52-118.
[9] 房世龙.桥墩附近流场特性及新型防护技术实验研究[D].南京:河海大学,2007: 91-102.
FANG Shi-long. Experimental study on characteristics of flow field and new protection technology around piers [D]. Nanjing: Hohai University, 2007: 91-102.
[10] TANG Hong-wu, DING Bing, CHIEW Yee-meng, et al. Protection of bridge piers against scouring with tetrahedral frames [J]. International Journal of Sediment Research, 2009, 24(4): 385-399.
[11] 丁兵.四面六边透水框架群防护冲刷机理及自身稳定性研究[D].南京:河海大学,2011: 33-66.
DING Bing. Study on scour protection mechanism and stabilities of tetrahedral frames [D]. Nanjing: Hohai University, 2011: 33-66.
[12] LU J Y, CHANG T F, CHIEW Y M, et al. Turbulence characteristics of flow passing through a tetrahedron frame in a smooth open-channel [J]. Advances in Water Resources, 2011, 34: 718-730.
[13] WANG Ping-yi, ZHANG Xiu-fang, WANG Wei-feng, et al. Effects of the central bar protection with tetrahedron-like penetrating frames [C]∥ 2012 International Conference on Modern Hydraulic Engineering. Oxford: Elsevier Ltd, 2012: 389-393.
[14] 郑英.吴伶.赵德玉,等.四面六边透水框架护滩结构效果水槽试验研究[J].水运工程,2012,(11):127-132.
ZHENG Ying, WU Ling, ZHAO De-yu, et al. Flume experiment of tetrahedron permeable framework structural effects of beach protection [J]. Port & Waterway Engineering, 2012, (11): 127-132.
[1] 刘士兴, 范对鹏, 程龙, 王世超, 丁力, 易茂祥. 静态随机存储器双向互锁存储单元的抗老化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1453-1461.
[2] 王海艳, 程严. 基于离散系数的双向服务选择方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1197-1204.
[3] 唐晓武, 李姣阳, 邹金杰, 赵宇, 甘鹏路, 刘维, 潘乘浪. 浅埋盾构隧道开挖面失稳发展过程模型试验[J]. 浙江大学学报(工学版), 2017, 51(5): 863-869.
[4] 郝子轶, 项晓燕, 陈晨, 孟建熠. 轻量级现场纠正的错误消除寄存器设计[J]. 浙江大学学报(工学版), 2017, 51(3): 605-611.
[5] 杨春宁, 方家为, 李春, 葛晖. 基于稳定性判据的高超声速复合控制方法[J]. 浙江大学学报(工学版), 2017, 51(2): 422-428.
[6] 赵亮, 吕亚飞, 贺治国, 林颖典, 胡鹏, 林挺. 分层水体和障碍物对斜坡异重流运动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2466-2473.
[7] 俞建霖, 龙岩, 夏霄, 龚晓南. 狭长型基坑工程坑底抗隆起稳定性分析[J]. 浙江大学学报(工学版), 2017, 51(11): 2165-2174.
[8] 王冕, 曲东昌, 陈国柱. 三相脉冲调制变流器驱动电源电磁兼容性能提升[J]. 浙江大学学报(工学版), 2016, 50(4): 657-662.
[9] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[10] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[11] 朱绍鹏,林鼎,谢博臻,俞小莉,韩松. 电动汽车驱动力分层控制策略[J]. 浙江大学学报(工学版), 2016, 50(11): 2094-2099.
[12] 黄华, 张树有, 刘晓健, 何再兴. 基于响应面模型的广义空间切削稳定性研究[J]. 浙江大学学报(工学版), 2015, 49(7): 1215-1223.
[13] 周锋,顾临怡,罗高生. 用于水下推进系统的先导比例减压阀的稳定性[J]. 浙江大学学报(工学版), 2015, 49(11): 2047-2053.
[14] 张俊峰, 戴小松, 邹维列, 徐顺平, 李子优. 水泥改性固化脱水淤泥路用性能试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2165-2171.
[15] 王日俊, 白越, 续志军, 宫勋, 张欣, 田彦涛. 基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J]. 浙江大学学报(工学版), 2015, 49(10): 2005-2012.