Please wait a minute...
浙江大学学报(工学版)
水利工程、土木工程     
舟山黏土和温州黏土灵敏度差别成因
龙凡, 王立忠, 李凯, 李玲玲
浙江大学 建筑工程学院,浙江 杭州 310058
Cause of sensitivity difference of Zhoushan clay and Wenzhou clay
LONG Fan, WANG Li-zhong, LI Kai, LI Ling-ling
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2394 KB)  
摘要:

针对浙江省如杭州、温州和宁波等地的陆域软土灵敏度一般在4左右,而舟山地区的海域软土灵敏度高达8这一现象,对舟山和温州两地的软土性状分别进行试验研究,包括常规土工试验、土体微结构电镜扫描、土中元素成分分析和矿物成分分析试验,探讨舟山土高灵敏度成因,并对物理力学形状进行研究.试验研究发现,舟山土相比温州土,液性指数更高,结构性更容易破坏,微结构排列更加松散无序,氯和钠元素含量更高,原生矿物含量更小而黏土矿物含量更高,这些试验结果能从不同角度解释舟山黏土和温州黏土灵敏度的差别.结果表明,舟山黏土高灵敏度的成因绝不是单个因素的影响,而是各种因素综合影响所导致的.

关键词: SEM高灵敏土舟山黏土试验研究EDS温州黏土    
Abstract:

In Zhejiang province, the sensitivity of soil in Zhoushan area is up to 8 while the average value is 4 in Hangzhou, Wenzhou, Ningbo, etc. areas. In order to investigate the cause of such a high value of sensitivity of Zhoushan soils, experimental study on Zhoushan and Wenzhou sensitive soils was conducted and compared in this paper, including conventional geotechnical tests, the scanning electron microscope (SEM) observations of microstructure, the energy dispersive X-ray spectroscopy (EDS) composition analyses and X-ray diffraction analyses of clay mineral compositions. As compared with Wenzhou soils, the liquidity index of Zhoushan soils is larger, the structure of Zhoushan soils tend to be destroyed easier, the microstructures of Zhoushan soils tend to be more loose and disordered, the contents of chlorine and sodium elements are higher and the contents of clay mineral are also higher of Zhoushan soils. It is conducted that the sensitivity difference of Zhoushan clay and Wenzhou clay are caused by various comprehensive factors.

Key words: sensitive soil    Wenzhou clay    experimental research    SEM    EDS    Zhoushan clay
出版日期: 2015-02-17
:  TU 473  
基金资助:

国家杰出青年科学基金资助项目(51325901)

通讯作者: 王立忠,男,教授,博导     E-mail: wlzzju@163.com
作者简介: 龙凡(1990—),男,硕士生,从事软土力学的研究. E-mail: longfan90@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
龙凡
王立忠
李凯
李玲玲

引用本文:

龙凡, 王立忠, 李凯, 李玲玲. 舟山黏土和温州黏土灵敏度差别成因[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.02.004.

LONG Fan, WANG Li-zhong, LI Kai, LI Ling-ling. Cause of sensitivity difference of Zhoushan clay and Wenzhou clay. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.02.004.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2015.02.004        http://www.zjujournals.com/xueshu/eng/CN/Y2015/V49/I2/218

[1] WOOD D M. Soil behaviour and critical state soil mechanics [M]. Cambridge: Cambridge University Press, 1990: 296-301.
[2] LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks [J]. Geotechnique, 1990, 40(3): 467-488.
[3] MITCHELL R J. On the yielding and mechanical strength of Leda clays [J]. Canadian Geotechnical Journal, 1970, 7(3): 297-312.
[4] 王立忠, 李玲玲. 结构性土体的施工扰动及其对沉降影响[J]. 岩土工程学报,2007,29(5):697-704.
WANG Li-zhong, LI Ling-ling. Field disturbance of structured clay and its effect on settlements of soil foundation [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 697-704.
[5] 王立忠,丁利,陈云敏,等. 结构性软土压缩特性研 [J]. 土木工程学报,2004,37(4): 46-53.
WANG Li-zhong, DING Li, CHEN Yun-min, et al. Study on compressibility of structured soft soil [J]. China Civil Engineering Journal, 2004, 37(4): 46-53.
[6] 缪林昌,经绯. 江苏海相灵敏性软土特征研究[J]. 岩土力学,2006,27(8): 1283-1286.
MIAO Lin-chang, JING Fei. Features research of Jiangsu marine sensitive soft coils [J]. Rock and Soil Mechanics, 2006, 27(08): 1283-1286.
[7] 李鹏娥. 闽南地区软黏土灵敏度试验及分析[J]. 华侨大学学报,2006,27(1),61-63.
LI Peng-e. Test and analysis of the soft clay sensitivity in south Fujian Province [J]. Journal of Huaqiao University, 2006, 27(1): 61-63.
[8] GB/T 50123-1999.土工试验方法标准[S]. 北京:中国计划出版社, 1999.
GB/T 50123-1999. Standard for soil test method [S]. Beijing: China Plan Publishing House, 1999.
[9] SL 237-1999.土工试验规程[S]. 北京:中国水利水电出版社,1999.
SL 237-1999. Specification of soil test [S]. Beijing: China Waterpower Press, 1999.
[10] BJERRUM L. Geotechnical properties of Norwegian marine clays [J]. Geotechnique, 1954, 4(2): 49-69.
[11] KUBIENA W L. Micropedology [M]. Iowa: Collegiate Press, 1938: 33-36.
[12] 唐朝生,施斌,王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报,2008, 30(4): 560-565.
TANG Chao-sheng, SHI Bin, WANG Bao-jun. Factors affecting analysis of soil microstructures using SEM [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
[13] REVELLE R, Piggot C S. Marine bottom samples collected in the pacific ocean by the carnegie on its seventh cruise [M]. Washington: Carnegie Institution of Washington, 1944: 32-60.
[14] 徐昶. 我国盐湖黏土矿物研究进展[J]. 盐湖研究,1993,1(2):72-77.
XU Chang. Advance of clay minerals research in salt lakes of China [J]. Journal of Salt Lake Science, 1993, 1(2): 72-77.
[15] 周晖. 矿物成分对软土强度性质的影响分析[J]. 工业建筑,2013,13(7):61-64.
ZHOU Hui. Analysis of mineral composition impact on soft soil’s strength properties [J]. Industrial Construction, 2013, 13(7): 61-64.
[16] 李国刚. 中国近海表层沉积物中黏土矿物的组成、分布及其地质意义[J]. 海洋学报,1990,12(4): 470-479.
LI Guo-gang. Composition, distribution pattern and its geologic implications of clay minerals in surface sediments from China coastal areas [J]. Acta Oceanologica Sinica, 1990, 12(4): 470-479.
[1] 刘磊, 杨鹏, 刘作军. 采用多核相关向量机的人体步态识别[J]. 浙江大学学报(工学版), 2017, 51(3): 562-571.
[2] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[3] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[4] 张慧莉, 田堪良. 矿渣聚丙烯纤维混凝土抗弯疲劳性能[J]. J4, 2011, 45(4): 699-707.
[5] 董石麟 袁行飞. 索穹顶结构体系若干问题研究新进展[J]. J4, 2008, 42(1): 1-7.
[6] 刘林 俞小莉. 液氮发动机试验及效率分析[J]. J4, 2007, 41(5): 774-779.
[7] 邢丽 赵阳 董石麟 顾磊 傅学怡. 矩形钢管焊接球节点的有限元分析与试验研究[J]. J4, 2006, 40(9): 1559-1563.
[8] 徐铨彪 金伟良 余祖国 严家熹. 混凝土小型空心砌块墙体非线性有限元分析[J]. J4, 2005, 39(6): 863-868.