Please wait a minute...
浙江大学学报(工学版)
能源工程     
纯化凹凸棒土催化废轮胎热解制取高值液态产物
丁宽,仲兆平,张波,刘志超
东南大学 能源与环境学院,能源热转换及其过程测控教育部重点实验室,江苏 南京 210096
Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite
DING Kuan, ZHONG Zhao-ping, ZHANG Bo, LIU Zhi-chao
School of Energy and Environment, Southeast University, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,  Nanjing 210096, China
 全文: PDF(1007 KB)  
摘要:
为研究纯化凹凸棒土对废轮胎热解的影响,选取NaOH、HY-51、凹凸棒土(凹土,OA)和纯化凹土(PA)4种催化剂进行催化热解试验,利用主成分分析法分析催化剂对热解油组分变化的影响.结果表明:废轮胎非催化热解在550 ℃时产油率达到最高42.4%,4种催化剂均能提高产油率;热解油中脂肪烃含量随着温度升高而降低,而芳香烃逐渐成为主要组分;NaOH和HY-51可提高脂肪烃的含量,后者对芳香烃的影响更大;OA则能促进环烯烃的生成并催化单环芳烃转化为多环芳烃;PA能够有效地催化脂肪烃向单环芳烃转化.分析结果表明,PA在催化废轮胎热解制取高价值液态产物方面具有很好的应用前景.
关键词: 热解凹凸棒土主成分分析催化废轮胎    
Abstract:
To investigate the influence of attapulgite on pyrolysis of scrap tire, NaOH, HY-51, attapulgite (OA) and purified attapulgite (PA) were chosen for catalytic pyrolysis. The mechanism of catalysts on composition of pyrolysis oil was investigated through principal component analysis (PCA). The results show that the highest oil yield of non-catalytic pyrolysis reaches 42.4% at 550℃.  All the catalysts increase the oil yield. The content of aliphatic hydrocarbons reduces when temperature  rises, while aromatic hydrocarbons become major components. NaOH and HY-51 improvethe content of aliphatic hydrocarbons, while the latter shows greater impact on aromatic hydrocarbons. The production of cycloolefins, as well as the conversion of aromatic hydrocarbons from monocyclic (MAH) to polycyclic (PAH), are promoted by OA. PA is
beneficial for the conversion of aliphatic hydrocarbons to MAH.  Consequently, PA has a good prospect in the catalytic pyrolysis of scrap tire to produce valuable liquid products.Keywords: scrap tire; catalysis; pyrolysis; attapulgite; principal component analysis.
Key words: pyrolysis    principal component analysis    scrap tire    catalysis    attapulgite
出版日期: 2014-12-08
:  X 705  
基金资助:
 国家“973”重点基础研究发展规划资助项目(2011CB201505);国家自然科学基金资助项目(51276040)
通讯作者: 仲兆平,男,教授     E-mail: zzhong@seu.edu.cn
作者简介: 丁宽(1988-),男,博士生,从事固体废弃物资源化利用方面研究. E-mail: yczl_dk@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁宽
仲兆平
张波
刘志超

引用本文:

丁宽,仲兆平,张波,刘志超. 纯化凹凸棒土催化废轮胎热解制取高值液态产物[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.020.

DING Kuan, ZHONG Zhao-ping, ZHANG Bo, LIU Zhi-chao. Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.020.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.11.020        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I11/2053

[1] WILLIAMS P T, BOTTRILL R P, CUNLIFFE A M. Combustion of tyre pyrolysis oil [J]. Process Safety and Environmental Protection, 1998, 76(4): 291-301.
[2] WILLIAMS P T, BRINDLE A J. Aromatic chemicals from the catalytic pyrolysis of scrap tyres [J]. Journal of Analytical and Applied Pyrolysis, 2003, 67(1): 143-164.
[3] OLAZAR M, AGUADO R; ARABIOURRUTIA M, et al. Catalyst effect on the composition of tire pyrolysis products [J]. Energy Fuels, 2008, 22(5): 2909-2916.
[4] SHAH J, JAN M R, MABOOD F. Catalytic conversion of waste tyres into valuable hydrocarbons [J]. Journal of Polymers and the Environment, 2007, 15(3): 207-211.
[5] WILLIAMS P T, BRINDLE A J. Catalytic pyrolysis of tyres: influence of catalyst temperature [J]. Fuel, 2002, 81(18): 2425-2434.
[6] DUNG N A, MHODMONTHIN A, WONGKASEMIIT S, et al. Effects of ITQ-21 and ITQ-24 as zeolite additives on the oil products obtained from the catalytic pyrolysis of waste tire [J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1): 338-344.
[7] 张兴华, 常杰, 王铁军, 等. 碱性条件下废轮胎真空热裂解研究[J]. 燃料化学学报, 2005, 33(6): 713-716.
ZHANG Xing-hua, CHANG Jie, WANG Tie-jun, et al. Vacuum pyrolysis of waste tires with basic additives. [J].Journal of Fuel Chemistry and Technology, 2005, 33(6): 713-716.
[8] ILKILIC C, AYDIN H. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine [J]. Fuel Processing Technology, 2011, 92(5): 1129-1135.
[9] KAR Y. Catalytic pyrolysis of car tire waste using expanded perlite [J]. Waste Management, 2011, 31(8): 1772-1782.
[10] SHAH J, JAN M R, MABOOD F. Catalytic conversion of waste tyres into valuable hydrocarbons [J]. Journal of Polymers and The
Environment, 2007, 15(3): 207-211.
[11] 石莹, 陈天虎, 张先龙, 等. 凹凸棒石黏土催化裂解生物质焦油[J]. 太阳能学报, 2010, 31(9): 1092-1096.
SHI Ying, CHEN Tian-hu, ZHANG Xian-long, et al. Biomass tar catalytic cracking use palygorskite as catalys [J]. Acta Energiae Solaris Sinica, 2010, 31(9): 1092-1096.
[12] 刘海波, 陈天虎, 张先龙, 等. 助剂对镍基催化剂催化裂解生物质气化焦油性能的影响[J]. 催化学报, 2010, 31(4): 409-414.
LIU Hai-bo, CHEN Tian-hu, ZHANG Xian-long, et al. Effect of additives on catalytic cracking of biomass gasification tar over nickel-based catalyst [J]. Chinese Journal of Catalysis, 2010, 31(4): 409-414.
[13] 周凯华. 凹凸棒石催化裂解生物质焦油[D]. 合肥: 合肥工业大学, 2009: 23-36.
ZHOU Kai-hua. Catalytic steam reforming of phenol as model compound of tar in biomass gasifieation over a novel palygorskit [D]. Hefei: Hefei University of Technology, 2009: 23-36.
[14] LI R, ZHONG Z P, JIN B S, et al. Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organic production [J]. Bioresource Technology, 2012, 119: 324-330.
[15] WILLIAMS P T, TAYLOR D T. Aromatization of tyre pyrolysis oil to yield polycyclic aromatic hydrocarbons [J]. Fuel, 1993, 72(11): 1469-1474.
[16] 张志霄, 池涌, 高雅丽, 等. 废轮胎热解油的成分分析及二次热解反应[J]. 工程热物理学报, 2005, 26(1): 159-162.
ZHANG Zhi-Xiao, CHI Yong, GAO Ya-li, et al. Characteristics of pyrolytic oil derived from pilot-scale pyrolysis of scrap tires and the secondary pyrolysis [J]. Journal of Engineering Thermophysics, 2005, 26(1): 159-162.
[17] ADJAYE J D, BAKHSHI N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts [J]. Fuel Processing Technology, 1995, 45(3): 161-183.
[18] UZUN B B, SARIOGLU N. Rapid and catalytic pyrolysis of corn stalks [J]. Fuel Processing Technology, 2009, 90(5): 705-716.
[19] 周杰, 刘宁, 李云, 等. 凹凸棒石粘土的显微结构特征[J]. 硅酸盐通报, 1999, 18(6): 50-55.
ZHOU Jie, LIU Ning, LI Yun, et al. Microscopic structure characteristics of attapulgite [J]. Bulletin of the Chinese Ceramic Socity, 1999, 18(6): 50-55.
[20] 刘海波. 凹凸棒石粘土负载铁镍催化裂解生物质焦油[D]. 合肥: 合肥工业大学, 2010: 25-29.
LIU Hai-bo. Catalytic decomposition of biomass tar over palygorskite clay supported Ni/Fe [D]. Hefei: Hefei University of Technology, 2010: 25-29.
[1] 赵庆辰, 周俊虎, 王业峰, 龙宇, 李欣婷, 杨卫娟. 微小圆管内正丁醇催化燃烧及动力学特性[J]. 浙江大学学报(工学版), 2018, 52(1): 59-64.
[2] 龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋. 非碳化聚合物两种热流吸收模式热解机理[J]. 浙江大学学报(工学版), 2017, 51(4): 784-791.
[3] 尚建丽, 宗志芳. 基于湿效应Ce-La/TiO2空心微球制备及光-湿性能[J]. 浙江大学学报(工学版), 2017, 51(2): 304-311.
[4] 刘楠, 滕富华, 陆建海, 董事壁, 顾震宇. 光催化-吸收法处理家具涂装废气中试试验[J]. 浙江大学学报(工学版), 2017, 51(2): 393-398.
[5] 厉文榜,方梦祥,岑建孟,肖平,时正海,山石泉,王勤辉,骆仲泱. K-Fe复合催化剂对煤半焦气化速率与产物的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1746-1751.
[6] 陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法. 基于热重红外质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 2016, 50(5): 961-969.
[7] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
[8] 倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱. 催化剂对CH4气氛下的煤热解特性的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 320-326.
[9] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[10] 孙强,张彦威,李谦,王智化,葛立超,周志军,岑可法. 褐煤快速热解半焦理化特性及气化活性[J]. 浙江大学学报(工学版), 2016, 50(11): 2045-2051.
[11] 俞明锋,李晓东,李文维,陈彤,严建华. 新型钒基催化剂催化降解气相二噁英[J]. 浙江大学学报(工学版), 2016, 50(11): 2052-2057.
[12] 黄眺,杨卫娟,周俊虎,王智化,刘建忠,岑可法. 微型圆管中正庚烷/空气预混催化燃烧特性实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2058-2063.
[13] 龚俊辉, 陈怡璇, 李劲, 周洋. PMMA表面与深度吸收热解过程数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1879-1888.
[14] 邱坤赞,耿雪威,蔡宇翔,竺新波,郑成航,高翔. 等离子体协同V2O5 WO3/TiO2催化降解恶臭气体的试验研究[J]. 浙江大学学报(工学版), 2016, 50(1): 63-69.
[15] 秦亚男, 杨玉, 时伟, 马炜晨, 周昊, 岑可法. SNCR-SCR耦合脱硝中还原剂均布性的研究[J]. 浙江大学学报(工学版), 2015, 49(7): 1255-1261.