Please wait a minute...
浙江大学学报(工学版)
能源工程     
MW燃煤锅炉富氧燃烧改造及NOx排放的数值模拟
游卓,王智化,周志军,胡昕,朱燕群,周俊虎,岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Numerical simulation of NOx emission from a 1 000 MW boiler retrofitted to oxy-fuel combustion
YOU Zhuo1, WANG Zhi-hua1, ZHOU Zhi-jun1, HU Xin1, ZHU Yan-qun1, ZHOU Jun-hu1, CEN Ke-fa1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1063 KB)  
摘要:

针对燃煤锅炉富氧燃烧改造的可行性以及NOx排放的问题,提出基于CFD数值模拟方法,开展1 000 MW双切圆式燃煤电站锅炉的富氧燃烧改造及其NOx排放的数值模拟研究.结果表明,当氧气体积分数为30%的富氧燃烧条件下模拟的炉膛温度分布、换热结果与改造前空气燃烧时相当.绝热火焰温度一致可以作为改造时氧浓度选择的依据.改造后燃料NOx、热力NOx的生成量均显著降低,总NOx生成量可达改造前的47.3%.大量二氧化碳的存在促进还原区煤焦气化反应和燃料氮的析出,削弱了NOx前驱物的氧化,促进NO还原,从而减少NOx生成量.增大燃烬风风率可降低NOx排放.再循环烟气中的NO的还原使NOx净生成量降低44.6%~71.8%.

关键词: 富氧燃烧锅炉CFDOFANOx    
Abstract:

 With CFD method, the numerical simulation of retrofit of a 1 000 MW ultra-supercritical boiler to oxy-fuel combustion and the NOx emission were carried out.The results show that, the temperature gradient and heat flux of the furnace are mostly consistent with that of before retrofit under the oxy-fuel combustion with 30% oxygen. Oxygen concentration can be decided when the adiabatic flame temperature of furnace after retrofit is same as that of before retrofit. Both the fuel NOx and thermal NOx decrease remarkably and the total NOx amount after retrofit is reduced to 47.3% of the reference boiler. The decrease of fuel NOx is majorly attributed to the enhancement of coal char gasification and the release of fuel nitrogen during the fuel rich zone, which resulted from the high CO2 concentration. Ehancing the the ratio of over fire air (OFA) would lower the NOx emission. The reduction of recycled NO in flue gasdecreases the net amount of NO by 44.6%~71.8%.

Key words: CFD    boiler    oxy-fuel combustion    NOx    OFA
出版日期: 2014-12-08
:  TK 229  
基金资助:

国家“973”重点基础研究发展规划资助项目(2012CB214906)

通讯作者: 王智化,男,教授,博导     E-mail: wangzh@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡昕
王智化
岑可法
游卓
周志军
朱燕群
周俊虎

引用本文:

游卓,王智化,周志军,胡昕,朱燕群,周俊虎,岑可法. MW燃煤锅炉富氧燃烧改造及NOx排放的数值模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.0241 000.

YOU Zhuo, WANG Zhi-hua, ZHOU Zhi-jun, HU Xin, ZHU Yan-qun, ZHOU Jun-hu, CEN Ke-fa. Numerical simulation of NOx emission from a 1 000 MW boiler retrofitted to oxy-fuel combustion. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.0241 000.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.11.0241 000        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I11/2080

[1] WALL T F. Combustion processes for carbon capture [J]. Proceedings of the Combustion Institute, 2007, 31(1):31-47.
[2] 郑楚光. 中国大陆CCS的发展现状及我们的工作进展[R].武汉:华中科技大学,2011.
ZHENG Chu-guang.Development status of CCS in China and our progress\[R\]. Wuhan:HuaZhong University of Science and Technology,2011.
[3] AL-ABBAS A H, NASER J, DODDS D. CFD modelling of air-fired and oxy-fuel combustion of lignite in a 100 kw furnace [J]. Fuel, 2011, 90(5):1778-1795.
[4] AL-ABBAS A H, NASER J. Effect of chemical reaction mechanisms and NOx modeling on air- fired and oxy- fuel combustion of lignite in a 100- kw furnace [J]. Energy Fuels, 2012, 26(6):3329-3348.
[5] CHUI E H, DOUGLAS M A, TAN Y. Modeling of oxy- fuel combustion for a western canadian sub- bituminous coal [J]. Fuel, 2003, 82(10):1201-1210.
[6] YIN C. Nongray- gas effects in modeling of large- scale oxy–fuel combustion processes [J]. Energy Fuels, 2012, 26(6):3349-3356.
[7] AL- ABBAS A H, Naser J, DODDS D. CFD modelling of air- fired and oxy- fuel combustion in a large- scale furnace at loy yang a brown coal power station [J]. Fuel, 2012, 102(0):646-665.
[8] 刘彦丰, 王建强, 梁秀俊, 等.300MW燃煤锅炉O2/CO2、烟气再循环燃烧的数值模拟[J]. 热能动力工程, 2009, 24(02):177-181.
LIU Yan- feng, WANG Jian- qiang, LIANG Xiu- jun, et al. Numerical Simulation of O2/CO2 recycled flue gas combustion in a 300MW boiler [J]. Journal of Engineering for Thermal Energy and Power, 2009, 24(02):177-181.
[9] 米翠丽, 阎维平, 李皓宇, 等. O2/CO2燃烧方式下锅炉对流传热系数的修正算法和数值研究[J]. 动力工程, 2009, 29(05):417-421.
MI Cui- li,YAN Wei- ping,LI Hao- yu,et al. Modified algorithm and numerical study of boiler convective heat transfer coefficient under O2/CO2 combustion mode[J]. Journal of Power Engineering, 2009, 29(05):417-421.
[10] 阎维平, 米翠丽, 梁秀俊, 等. 采用O2/CO2燃烧方式的锅炉热效率计算与分析[J]. 热力发电, 2009, 38(06):20-23.
YAN Wei- ping, MI Cui- li, LIANG Xiu- jun, et al. Calculation and analysis of thermal efficiency for boilers adopting O2/CO2 combustion mode [J]. Thermal Power Generation, 2009, 38(06):20-23.
[11] CHUI E H, MAJESKI A J, DOUGLAS M A, et al. Numerical investigation of oxy- coal combustion to evaluate burner and combustor design concepts [J]. Energy, 2004, 29(910):1285-1296.
[12] 游卓, 王智化, 周志军, 等. O2/CO2气氛下无烟煤及烟煤燃烧NO释放特性对比试验研究 [J]. 中国电机工程学报, 2011, 31(35):53-58.
YOU Zhuo, WANG Zhi- hua, ZHOU Zhi- jun, et al. NO Emission during combustion of anthracite and bituminous coal in O2/CO2 atmosphere [J].Proceedings of the CSEE, 2011, 31(35):53-58.
[13] 高松平, 赵建涛, 王志青,等. CO2对褐煤热解行为的影响[J]. 燃料化学学报, 2013, 41(03):257-264.
GAO Song- ping, ZHAO Jian- tao, WANG Zhi- qing, et al. Effect of CO2 on pyrolysis behaviors of lignite[J]. Journal of Fuel Chemistry and Technology, 2013, 41(03):257-264.
[14] 王鹏, 文芳, 步学朋,等. 煤热解特性研究[J]. 煤炭转化, 2005, 28(1):8-13.
WANG Peng, WEN Fang, BU Xue- peng, et al. Study on the pyrolysis characteristics of coal [J]. Coal Conversion, 2005, 28(1):8-13.
[15] 段伦博, 周骛, 卢骏营,等. CO2浓度对煤焦燃烧及污染物排放特性影响的试验研究[J]. 动力工程, 2009, 29(06):571-575.
DUAN Lun- bo, ZHOU Wu, LU Jun- ying, et al. Effects of CO2 concentration on the combustion and pollutant emission characteristics of coal and char [J]. Journal of Power Engineering, 2009, 29(06):571-575.
[16] 胡满银, 刘忠, 李媛,等. 富氧燃烧方式下NOx生成的化学动力学模拟[J]. 动力工程学报, 2010, 30(7):536-541.
HU Man- yin, LIU Zhong, LI Yuan, et al. Chemical kinetics simulation on NOx production in Oxygen- enriched combustion[J]. Journal of Chinese Society of Power Engineering, 2010, 30(7):536-541.
[17] 赵然, 刘豪, 胡翰,等. O2/CO2 气氛下甲烷火焰中NO均相反应机理研究[J]. 中国机电工程学报, 2009, 29(20):52-59.
ZHAO Ran, LIU Hao, HU Han,et al. Homogeneous reaction mechanism research on NO in CH4 flame under O2/CO2 atmosphere[J].Proceedings of the CSEE, 2009, 29(20):52-59.
[18] National Institute of Standards and Technology. NIST Chemistry WebBook[DB/OL]. http:∥webbook.nist.gov/chemistry/, 2013-04-11.
[19] GLARBORG P, BENTZEN L L B. Chemical effects of a high CO2 concentration in oxy- fuel combustion of methane [J]. Energy & Fuels, 2008, 22(1):291-296.
[20] GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems [J]. Progress in Energy and Combustion Science, 2003, 29(2):89-113.

[1] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[2] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[3] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.
[4] 徐辉, 蔡忆昔, 李小华, 施蕴曦, 李伟俊 . 低温等离子体降低柴油机微粒和NOx排放试验研究[J]. 浙江大学学报(工学版), 2016, 50(12): 2418-2423.
[5] 俞明锋,李晓东,李文维,陈彤,严建华. 新型钒基催化剂催化降解气相二噁英[J]. 浙江大学学报(工学版), 2016, 50(11): 2052-2057.
[6] 龚彬, 余春江, 王准, 骆仲泱. 生物质炉排锅炉不同受热面沉积特性[J]. 浙江大学学报(工学版), 2015, 49(8): 1578-1584.
[7] 李恒,郝志勇,刘联鋆,郑旭. 多腔穿孔消声器声学特性三维时域计算及评估[J]. 浙江大学学报(工学版), 2015, 49(5): 887-892.
[8] 沈忠良,邓凯,王明晓,钟英杰. 声场频率与振幅对火焰NOx生成特性的影响[J]. 浙江大学学报(工学版), 2015, 49(11): 2198-2204.
[9] 郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.
[10] 董康, 周昊, 杨玉, 王凌力, 岑可法. 二次风风量对旋流燃烧器气固流动特性的影响[J]. 浙江大学学报(工学版), 2014, 48(12): 2162-2171.
[11] 余春江,王准,龚彬,骆仲泱. 生物质锅炉钢材在氯化钾接触条件下腐蚀特性[J]. 浙江大学学报(工学版), 2014, 48(11): 2046-2052.
[12] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.
[13] 王伟武,杨华杰,邵宇翎,汤书福. 城市住区室外热环境三维分布特征模拟——以杭州为例[J]. J4, 2013, 47(7): 1178-1185.
[14] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.
[15] 李延吉, 姜璐, 赵宁, 李玉龙, 李润东, 池涌. 垃圾衍生燃料富氧燃烧污染物排放特性[J]. J4, 2013, 47(2): 314-318.