Please wait a minute...
浙江大学学报(工学版)
土木工程     
悬臂梁固定端不同位移边界条件下解的对比
杨连枝1,2, 张亮亮2,3, 余莲英2, 尚兰歌2, 高阳2, 王敏中4
1. 北京科技大学 土木与环境工程学院, 北京 100083; 2. 中国农业大学 理学院, 北京 100083; 3. 中国农业大学 工学院, 北京 100083; 4. 北京大学 力学与空天技术系, 北京 100871
Comparison of solutions from different displacement boundary conditions at fixed end of cantilever beams
YANG Lian-zhi1,2, ZHANG Liang-liang2,3, YU Lian-ying2, SHANG Lan-ge2, GAO Yang2, WANG Min-zhong4
1. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China; 2. College of Science, China Agricultural University, Beijing 100083, China; 3. College of Engineering, China Agricultural University, Beijing 100083, China; 4. Department of Mechanics and Aerospace Engineering, Peking University, Beijing 100871, China
 全文: PDF(702 KB)  
摘要:

为了获得不同的悬臂梁固定端位移边界处理方式对结果的影响,针对悬臂梁承受3种载荷的情况:自由端受切向力,上表面受均布载荷和线性分布载荷,给出悬臂梁固定端利用传统边界条件和最小二乘法处理边界时,Timoshenko梁理论、Levinson梁理论和弹性力学理论的解析解,与有限元计算结果对比.结果表明,Timoshenko梁理论采用传统位移边界和最小二乘法处理边界的结果一致,采用最小二乘法处理边界获得的Levinson梁理论和弹性力学理论的解明显优于传统位移确定方法,且这种优势随着载荷阶次的增加而越加明显.

关键词: 悬臂梁边界条件Timoshenko梁理论Levinson梁理论最小二乘法    
Abstract:

To obtain the influence of different displacement boundary conditions for the fixed end on analytical solutions of a cantilever beam, three load cases for a cantilever beam were investigated, which were a transverse shear force at the free end, a uniformly distributed load at the top surface, and a linearly distributed load at the top surface, respectively. Analytical solutions were given for Levinson theory, Timoshenko theory, and the elastic theory by using the conventional displacement boundary condition and the boundary condition through least squares method at the fixed end of the beam, and were compared with the solutions by  finite element method. It is shown that the solutions from Timoshenko theory by using both the conventional displacement boundary condition and the condition through least squares method are the same; Levinson theory and the elastic theory by using the boundary condition through least squares method provide better results than those by using the conventional boundary condition. With an increase in the order of the load, the superiority becomes more and more obvious.

Key words: boundary condition    least squares method    Levinson beam theory    cantilever beam    Timoshenko beam theory
出版日期: 2014-12-08
:  TU 391  
基金资助:

国家自然科学基金资助项目(11472299,11172319);中央高校基本科研业务费专项资金资助项目(2011JS046,2013BH008);教育部新世纪优秀人才支持计划项目(NCET-13-0552);非线性力学国家重点实验室开放基金和国家大学生科研创新项目

通讯作者: 高阳,男,教授,博导     E-mail: gaoyangg@gmail.com
作者简介: 杨连枝(1982-),女,讲师,从事固体弹性理论分析. E-mail: ylz_xiaozhu@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨连枝
余莲英
高阳
王敏中
张亮亮
尚兰歌

引用本文:

杨连枝, 张亮亮, 余莲英, 尚兰歌, 高阳, 王敏中. 悬臂梁固定端不同位移边界条件下解的对比[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.007.

YANG Lian-zhi, ZHANG Liang-liang, YU Lian-ying, SHANG Lan-ge, GAO Yang, WANG Min-zhong. Comparison of solutions from different displacement boundary conditions at fixed end of cantilever beams. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.007.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.11.007        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I11/1955

1] WANG C M, REDDY J N. Shear deformable beams and plates relations wiht classical solutions [M]. New York: Elsevier, 2000: 117.
[2] TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibration of prismatic bars \[J\]. Philosophical Magazine Series 6, 1921, 41: 744-746.
[3] LEVINSON M. A new rectangular beam theory [J]. Journal of Sound and Vibration, 1981, 74(1): 81-87.
[4] TIMOSHENKO S P, GOODIER J C. Theory of elasticity [M]. New York: McGraw-Hill, 1970: 44-45.
[5] GERE J M, Goodno B J. Mechanics of Materials (8th edition) [M]. USA: Cengage Learning, 2012: 730-735.
[6] 于涛, 仲政. 均布载荷作用下功能梯度悬臂梁弯曲问题的解析解[J].固体力学学报, 2006, 27(1): 15-20.
YU Tao, ZHONG Zheng. A general solution of a clamped functionally graded cantilever-beam under uniform loading [J]. Acta Mechanica Solida Sinica, 2006, 27(1): 15-20.
[7] 杨永波, 石志飞, 陈盈. 线性分布载荷作用下梯度功能压电悬臂梁的解[J]. 力学学报, 2004, 36(3): 305-310.
YANG Yong-bo, SHI Zhi-fei, CHEN Ying. Piezoelectric cantilever actuator subjected to a linearly distributed loading [J]. Acta Mechanica Sinica, 2004, 36(3): 305-310.
[8] SHI Zhi-Fei, CHEN Ying. Functionally graded piezoelectric cantilever beam [J]. Archive of Applied Mechanics, 2004, 74: 237-247.
[9] HUANG De-jin, DING Hao-Jiang, CHEN Wei-Qiu. Analysis of functionally graded and laminated piezoelectric cantilever actuators subjected to constant voltage[J]. Smart Materials and Structures, 2008, 17: 065002.
[10] 王敏中. 关于“平面弹性悬臂梁剪切挠度问题[J]. 力学与实践,2004,26(6):66-68.
WANG Min-zhong. About “Problems on the shear deflection of a planer elastic cantilever beam” [J]. Mechanics in Engineering, 2004, 26(6): 66-68.
[11] 黄文彬.平面弹性悬臂梁剪切挠度问题[J].力学与实践,1997,19(2): 61-62.
HUANG Wen-bin. Problems on the shear deflection of a planer elastic cantilever beam [J]. Mechanics in Engineering, 1997, 19(2): 61-62.
[12] 黄文彬.平面弹性悬臂梁剪切挠度的进一步研究[J].力学与实践, 1998, 20(5): 65.
HUANG Wen-bin. Further study on the shear deflection of a planer elastic cantilever beam [J] . Mechanics in Engineering, 1998, 20(5):65.
[13] 唐玉花,王鑫伟.关于“平面弹性悬臂梁剪切挠度问题”的进一步研究[J].力学与实践,2008,30:97-99.
TANG Yu-hua, WANG Xin-wei. Further study on “Problems on the shear deflection of a planer elastic cantilever” [J]. Mechanics in Engineering, 2008, 30: 97-99.
[14] COWPER G R. The shear coefficients in Timoshenkos beam theory [J]. ASME Journal of Applied Mechanics, 1966, 33: 335-340.

[1] 袁世斐, 吴红杰, 殷承良. 锂离子电池简化电化学模型:浓度分布估计[J]. 浙江大学学报(工学版), 2017, 51(3): 478-486.
[2] 李滔, 王士同. 增量式0阶TSK模糊分类器及鲁棒改进[J]. 浙江大学学报(工学版), 2017, 51(10): 1901-1911.
[3] 熊海贝,曹纪兴,张凤亮. 含加强层框筒结构位移监测方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1752-1760.
[4] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[5] 吴尧锋,王文,卢科青,魏燕定,陈子辰. 边界聚类椭圆快速检测方法[J]. 浙江大学学报(工学版), 2016, 50(3): 405-411.
[6] 卢雨,胡安康,刘亚冲. 基于有限点法的自由面流动的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(1): 55-62.
[7] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.
[8] 张达敏,王仕韬,林辉品,吕征宇. 变拓扑N脉波相控整流器的电流预测控制方法[J]. 浙江大学学报(工学版), 2014, 48(7): 1304-1311.
[9] 展永政, 王光庆. 压电振动能量采集器的性能分析与功率优化[J]. 浙江大学学报(工学版), 2014, 48(7): 1248-1253.
[10] 乔龙学, 王伟刚, 何姗, 鲁阳. 双悬臂梁直径测量传感器性能分析[J]. J4, 2012, 46(6): 1060-1066.
[11] 丘磊, 田钢, 石战结, 沈洪垒. 起伏地表条件下有限差分地震波数值模拟
——基于广义正交曲线坐标系
[J]. J4, 2012, 46(10): 1923-1931.
[12] 吴占雄,朱善安,BIN He. 基于移动最小二乘法的白质纤维束走向跟踪[J]. J4, 2011, 45(3): 458-461.
[13] 潘海鹏, 吕勇松. 时滞系统的模糊神经网络补偿控制[J]. J4, 2010, 44(7): 1343-1347.
[14] 陈美娟, 陈杰勋, 王靖岱, 蒋斌波, 阳永荣. 聚乙烯密度的拉曼光谱检测[J]. J4, 2010, 44(6): 1164-1168.
[15] 郑雅羽, 田翔, 陈耀武. 基于随机采样的两阶段全局运动估计[J]. J4, 2010, 44(1): 131-135.