Please wait a minute...
浙江大学学报(工学版)
计算机技术﹑电信技术     
水下运载器非奇异快速终端滑模控制
王尧尧1, 顾临怡1, 高 明1, 贾现军1, 朱康武2
1. 浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027; 2. 上海航天控制技术研究所, 上海 200233
Nonsingular fast terminal sliding mode control for underwater vehicles
WANG Yao-yao1, GU Lin-yi1, GAO Ming1, JIA Xian-jun1, ZHU Kang-wu2
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; 2. Shanghai Institute of Spaceflight Control Technology, Shanghai 200233, China
 全文: PDF(1426 KB)  
摘要:

针对传统基于线性滑模面的滑模控制方法收敛速度慢、易于颤振的难题,提出一种新型多变量非奇异快速终端滑模控制方法. 利用Lyapunov稳定性理论对该方法进行理论分析,结果表明:系统位置跟踪误差和速度跟踪误差将在有限时间内收敛到小球域内, 并且小于相同参数条件下传统基于线性滑模面的滑模控制方法. 以正在开发的北极星号遥控水下运载器的四自由度控制为研究对象, 将该方法和基于指数趋近律的传统滑模控制方法进行仿真对比, 结果表明:当存在较强未知外干扰和较大参数不确定性以及测量噪声时, 该方法相对传统滑模控制方法可以获得更快的动态响应速度、更高的稳态控制精度和更平滑的控制输入.

关键词: 滑模控制多变量控制动力定位水下运载器非奇异快速终端滑模控制    
Abstract:

To resolve the problems in the traditional linear hyperplane-based sliding mode control (SMC) method such as low convergence speed and easy to chattering, a novel multivariable nonsingular fast terminal sliding mode control (NFTSMC) method was proposed. Theoretical analysis using Lyapunov stability theory was addressed for the proposed method. The result shows that the position and velocity tracking errors will converge to small ball fields in finite time, and they are smaller than the ones obtained by the traditional linear hyperplane-based SMC method under the same control parameters. For the 4-DOF (degrees of freedom) control of POLARIS remotely operated vehicle (ROV) which is being built up,  comparative simulations were performed using the new proposed method and a traditional exponential reaching law based SMC method respectively. The  results prove that the new proposed method can achieve faster dynamic response speed, higher steady control precision and more smooth control inputs compared with the traditional SMC method in the presence of large unknown external disturbances, big parameter uncertainties and measurement noise.

Key words: nonsingular fast terminal sliding mode control    underwater vehicles    dynamic positioning    sliding mode control    multivariable control
出版日期: 2014-09-30
:  TP 249  
基金资助:

国家自然科学基金资助项目(51221004)

通讯作者: 顾临怡, 男, 教授, 博导     E-mail: lygu@zju.edu.cn
作者简介: 王尧尧(1989-), 男,博士生, 主要从事水下运载器非线性鲁棒控制研究. E-mail:11125051@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
顾临怡
贾现军
朱康武
王尧尧
高 明

引用本文:

王尧尧, 顾临怡, 高 明, 贾现军, 朱康武. 水下运载器非奇异快速终端滑模控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.09.001.

WANG Yao-yao, GU Lin-yi, GAO Ming, JIA Xian-jun, ZHU Kang-wu. Nonsingular fast terminal sliding mode control for underwater vehicles. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.09.001.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.09.001        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I9/1541

1]朱康武, 顾临怡. 作业型遥控水下运载器的多变量 backstepping 鲁棒控制[J]. 控制理论与应用, 2011, 28(10): 1441-1446.
ZHU Kang-wu, GU Lin-yi. Multivariable backstepping robust control for work-class remotely operated vehicle [J]. Control Theory & Applications, 2011, 28(10): 1441-1446.
[2]YOERGER D R, NEWMAN J B, SLOTINE J. Supervisory control system for the JASON ROV [J]. IEEE Journal of Oceanic Engineering, 1986, 11(3): 392-400.
[3]YOERGER D R, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462-470.
[4] BESSA W M, DUTRA M S, KREUZER E. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller [J]. Robotics and Autonomous Systems, 2008, 56(8): 670-677.
[5] HOANG N Q, KREUZER E. A robust adaptive sliding mode controller for remotely operated vehicles [J]. Technische Mechanik, 2008, 28(3/4): 185-193.
[6]BAGHERI A, MOGHADDAM J J. Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle [J]. Neurocomputing,2009, 72(7): 1934-1950.
[7]YU Shuang-he, YU Xing-huo, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11): 1957-1964.
[8] NEKOUKAR V, ERFANIAN A. Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems [J]. Fuzzy Sets and Systems, 2011, 179(1): 34-49.
[9] FAN Li-ping, YU Ya-zhou. Dynamic adaptive terminal sliding mode control for DC-DC converter [J]. Electronics and Signal Processing, 2011,97(1): 503-507.
[10]YANG Liang, YANG Jian-ying. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems [J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879.
[11]ZHU Zheng, XIA Yuan-qing, FU Meng-yin. Attitude stabilization of rigid spacecraft with finite-time convergence [J]. International Journal of Robust and Nonlinear Control, 2011, 21(6): 686-702.
[12] KIM J C, RYU J K, BACK J H,et al. Terminal sliding mode control in reaching and sliding dynamics with input limit [C]∥Proceedings of International Conference on Control, Automation and Systems. Korea:[s. n.], 2010.
[13]FENG Yong, YU Xing-huo, MAN Zhi-hong. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159-2167.
[14]JIN M L, LEE J, CHANG P H, et al. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3593-3601.
[15]CHEN S Y, LIN F J. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system [J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 636-643.
[16] WANG Jian-ying, SUN Zhao-wei. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying [J]. Acta Astronautica, 2012, 73: 76-87.
[17] LI Hao, DOU Li-hua, SU Zhong. Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator [J]. International Journal of Systems Science, 2013, 44(3): 401-415.
[18] FOSSEN T I. Guidance and control of ocean vehicles [M]. New York: Wiley, 1994.
[19]李升波, 李克强, 王建强, 等. 非奇异快速的终端滑模控制方法[J]. 信息与控制, 2009, 38(1): 18.
LI Sheng-bo, LI Ke-qiang, WANG Jian-qiang, et al. Nonsingular and fast terminal sliding mode control method [J]. Information and Control, 2009, 38(1):18.

[1] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[2] 郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.
[3] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[4] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[5] 王飞, 管成, 肖扬, 李威. 挖掘机动臂势能回收系统的压力滑模控制[J]. 浙江大学学报(工学版), 2016, 50(2): 201-208.
[6] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.
[7] 钱鹏飞, 陶国良, 孟德远, 钟伟, 班伟, 朱晓. 电控气动离合器执行器滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2014, 48(6): 1102-1106.
[8] 全宇, 年珩. 非理想电网下双馈感应发电机谐振滑模控制[J]. J4, 2014, 48(4): 575-580.
[9] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[10] 张雷, 邬义杰, 王彬, 刘孝亮. 超磁致伸缩构件精密加工异形孔滑模控制[J]. J4, 2012, 46(8): 1412-1418.
[11] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[12] 刘子建, 吴敏, 陈鑫, 王春生. 永磁同步电机混合非线性控制策略[J]. J4, 2010, 44(7): 1303-1307.
[13] 孙宁, 张化光, 王智良. 不确定分数阶混沌系统的滑模投影同步[J]. J4, 2010, 44(7): 1288-1291.
[14] 路波, 陶国良, 刘昊, 等. 零重力模拟气动悬挂系统的建模及恒压控制[J]. J4, 2010, 44(2): 379-385.
[15] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.