Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
垃圾衍生燃料流化床富氧气化实验研究
伏启让,黄亚继,牛淼淼,杨高强,刘长奇, 王昕晔
东南大学 能源热转换及其过程测控教育部重点实验室,江苏 南京 210096
Experimental study on refuse derived fuel gasification with oxygen-rich air in fluidized bed gasifier
FU Qi-rang, HUANG Ya-ji, NIU Miao-miao, YANG Gao-qiang, LIU Chang-qi, WANG Xin-ye
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
 全文: PDF(1742 KB)  
摘要:

为了研究不同操作工艺参数对垃圾衍生燃料(RDF)流化床富氧气化特性的影响,在常压流化床气化炉上进行徐州RDF的富氧气化实验,研究气化温度、当量比及氧体积分数对气化特性的影响.结果表明:随着气化温度由600 ℃升至800 ℃,气体产物中H2和CO体积分数显著增加,气体热值和气化效率增加;当量比通过影响气化反应程度及燃料碳转化率间接改变气化效果,当氧体积分数为425%、气化温度为770 ℃时,气化最佳当量比约为02,过高或过低均会导致可燃组分和气化效率的降低;随着氧体积分数由21%增至425%,可燃组分体积分数不断增加,与空气气化相比,富氧气化的气化效果有显著改善.

关键词: 富氧气化流化床垃圾衍生燃料(RDF)气化特性    
Abstract:

XuZhou’s refuse derived fuel (RDF) gasification with oxygen-rich air was conducted in a fluidized bed gasifier in order to analyze the influence of different operating parameters on the gasification characteristics. The effects of equivalence ratio, gasification temperature and volume fraction of oxygen on performance of product gases were investigated through a series of experiments. Results showed that rising temperature from 600 ℃ to 800 ℃ enhanced the volume fraction of H2 and CO and improved low heating value (LHV) and gasification efficiency. Equivalence ratio by influencing the gasification reaction degree and the carbon conversion rate indirectly changed the gasification effect. The optimum equivalence ratio for oxygen-rich air gasification was about 02 under oxygen volume fraction of 425% and 770 ℃. Higher or lower equivalence ratio can reduce the combustible components and gasification efficiency. As volume fraction of oxygen was increased from 21% to 425%, the volume fraction of combustible components was increasing quickly. Compared to air gasification, the gasification efficiency with oxygen-rich air was improved significantly.

Key words: fluidized bed    gasification characteristics    oxygen-rich gasification    refuse derived fuel (RDF)
出版日期: 2014-08-01
:  TK 6  
基金资助:

国家“973”重点基础研究发展规划资助项目(2011CB201505);国家自然科学基金资助项目(51006023)

通讯作者: 黄亚继,男,教授,博导     E-mail: heyyj@seu.edu.cn
作者简介: 伏启让(1989-),男,硕士生,从事生物质气化的研究. E-mail: fuqirangren@126. com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
伏启让
黄亚继
牛淼淼
杨高强
王昕晔
刘长奇

引用本文:

伏启让,黄亚继,牛淼淼,杨高强,刘长奇, 王昕晔. 垃圾衍生燃料流化床富氧气化实验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.018.

FU Qi-rang, HUANG Ya-ji, NIU Miao-miao, YANG Gao-qiang, LIU Chang-qi, WANG Xin-ye. Experimental study on refuse derived fuel gasification with oxygen-rich air in fluidized bed gasifier. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.018.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.07.018        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I7/1265

1]TIAN He-zhong, GAO Jia-jia, HAO Ji-ming, et al. Atmospheric pollution problems and control proposals associated with solid waste management in China: a review [J]. Journal of Hazardous Materials, 2013, 252(2): 142-154.
[2]DONG Qing-zhang, TAN S K, GERSBERG R M. Municipal solid waste management in China: status, problems and challenges [J]. Journal of Environment Management, 2010, 91(8):1623-1633.
[3]李延吉,李润东,李爱民, 等. 基于灰色关联和BP神经网络研究废弃物气化特性[J].热力发电, 2008, 37(5): 16-20.
LI Yan-ji, LI Run-dong, LI Ai-ming, et al. Study on characteristics of waste gasification based on grey relation analysis and BP neural network [J]. Thermal Power Generation, 2008, 37(5): 16-20.
[4]吕鹏梅,常杰,熊祖鸿,等.生物质在流化床中的空气-水蒸气气化研究[J].燃料化学学报, 2003, 31(4): 305-310.
LV Peng-mei, CHANG Jie, XIONG Zu-hong, et al. An experimental research on biomass air-steam gasification in a fluidized bed [J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 305-310.
[5]MARIA L M, LUCIO Z, DONATO S, et al. The O2-enriched gasification of coal, plastics and wood in a fluidized bed reactor [J]. Waste Management, 2010, 32(4): 733-742.
[6]吴创之,阴秀丽,徐冰燕,等. 生物质富氧气化特性的研究[J].太阳能学报, 1997, 18(3): 237-242.
WU Chuang-zhi, YIN Xiu-li, XU Bing-yan,et al. Experimental study of biomass gasification with oxygen-rich air [J]. Acta Energiae Solaris Sinica, 1997, 18(3): 237-242.
[7]苏德仁, 周肇秋, 谢建军, 等. 生物质流化床富氧-水蒸气气化制备合成气研究[J]. 农业机械学报,2011,42(3):100-104.
SU De-ren, ZHOU Zhao-qiu, XIE Jian-jun, et al. Biomass oxygen enriched-steam gasification in an atmospheric fluidized bed for syngas production [J].Transactions of the Chinese Society for Agricultural Machinery, 2011,42(3):100-104.
[8] 董玉平, 董磊, 景元琢. 生物质膜法富氧气化制气技术试验研究[J]. 太阳能学报,2011,32(6): 792-796.
DONG Yu-ping, DONG Lei, JING Yuan-zhuo. The study of biomass oxygen rich-steam gasification to produce hydrogen rich gas [J]. Acta Energiae Solaris Sinica, 2011, 32(6): 792-796.
[9] UMBERTO A. Process and technological aspects of municipal solid waste gasification. a review [J].Waste Management, 2012, 32(4): 625-639.
[10] GASTON K R, JARVIS M W, PEPIOT P, et al. Biomass pyrolysis and gasification of varying particle sizes in a fluidized-bed reactor [J]. Energy Fuels, 2011, 25 (8): 3747-3757.
[11] 刘荣厚,牛卫生,张大雷. 生物质热化学转换技术[M]. 北京:化学工业出版社,2005: 116-124.
[12] EL-RUB Z A, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction [J]. Fuel, 2008,87(10/11): 2243-2252.
[13]PHILIPPE M, RAPHAEL D. Performance analysis of a biomass gasifier [J]. Energy Conversion and Management, 2002, 43(9): 1291-1299.
[14]DUAN Feng, JIN Bao-sheng, HUANG Ya-ji, et al. Results of bituminous coal gasification upon exposure to a pressurized pilot-plant circulating fluidized-bed (CFB) reactor [J]. Energy and Fuels, 2010, 24(5): 3150-3158.
[15]LV P M, XIONG Z H, CHANG J, et al. An experimental study on biomass air-steam gasification in a fluidized bed [J]. Bioresource and Technology, 2004, 95(1):95101.
[16]池涌,郑皎,金余其,等. 模拟垃圾流化床气化特性的实验研究[J].中国电机工程学报, 2008, 28(29): 59-63.
CHI Yong, ZHENG Jiao, JIN Yu-qi, et al. Experimental study on fluidized-bed gasification of simulated MSW [J]. Proceedings of the Chinese Electrical Engineering, 2008, 28(29): 59-63.
[17] BASU P. Biomass gasification and pyrolysis: practical design and theory [M]. [S.l.]: Academic press, 2010.

[1] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[2] 任立波, 韩吉田, 赵红霞. 单沉浸管流化床内离散颗粒数值模拟[J]. 浙江大学学报(工学版), 2015, 49(1): 150-156.
[3] 李延吉,邹科威,姜璐,李润东,池涌,岑可法. 垃圾衍生燃料焚烧污染物排放实验与模拟[J]. 浙江大学学报(工学版), 2014, 48(7): 1254-1259.
[4] 韩笑,周业丰,黄正梁,顾玉彬,王靖岱,俞欢军,阳永荣. 基于声信号的气固流化床塌落过程研究[J]. J4, 2014, 48(3): 527-534.
[5] 王星昊, 王智化, 刘敬, 项飞鹏, 周俊虎, 岑可法. 某鲕状赤铁矿流化床燃煤还原焙烧-磁选研究[J]. J4, 2013, 47(4): 675-679.
[6] 王勤辉,徐志,刘彦鹏, 骆仲泱,倪明江. 流化床燃烧中煤含灰量对灰渣形成特性的影响[J]. J4, 2012, 46(5): 941-947.
[7] 田晨, 王勤辉, 程乐鸣, 骆仲泱, 倪明江. 偏置出口循环流化床内颗粒体积分数分布的测试[J]. J4, 2012, 46(4): 577-583.
[8] 黄晨,程乐鸣,周星龙,吴朝刚,周棋,方梦祥,骆仲泱. 大型循环流化床炉内悬吊受热面传热特性[J]. J4, 2012, 46(11): 2128-2132.
[9] 王国军,朱燕群,王智化,杨丽,王星昊,黄镇宇,周俊虎,岑可法. 低品位铁矿石流化焙烧-磁选提质试验研究[J]. J4, 2011, 45(5): 885-889.
[10] 陆胜勇, 吴海龙, 陈彤, 李晓东, 严建华. 垃圾和煤混烧流化床焚烧炉的二恶英排放质量平衡[J]. J4, 2011, 45(12): 2188-2195.
[11] 李斌,黄亚继,金保昇,段锋,章名耀. 加压湍动循环流化床气化炉煤气成分与热值试验[J]. J4, 2011, 45(11): 2026-2030.
[12] 李社锋, 方梦祥, 余斌, 周宛谕, 王勤辉, 施正伦, 骆仲泱, 岑可法. 新疆石煤料团流化床焙烧提钒试验研究[J]. J4, 2010, 44(6): 1133-1137.
[13] 赵永志, 江茂强, 徐平, 郑津洋. 埋管流化床内传热行为的微观尺度模拟研究[J]. J4, 2010, 44(6): 1178-1184.
[14] 王琦, 骆仲泱, 王树荣, 岑可法. 生物质快速热裂解制取高品位液体燃料[J]. J4, 2010, 44(5): 988-990.
[15] 郑成航, 程乐鸣, 骆仲泱, 王勤辉, 施正伦, 岑可法. 裤衩型300 MW循环流化床炉膛二次风数值模拟[J]. J4, 2010, 44(4): 743-749.