Please wait a minute...
浙江大学学报(工学版)
计算机技术﹑电信技术     
基于正则化风险最小化的目标计数
吴鹏洲,于慧敏,曾雄
浙江大学 信息与电子工程学系,浙江 杭州 310027
Object counting based on regularized risk minimization
WU Peng-zhou, YU Hui-min, ZENG Xiong
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1608 KB)  
摘要:

针对现有研究对目标空间信息的普遍忽视及其对高密度群体精确计数的困难,提出对输入图像估计一个密度函数.通过该函数在任意图像区域上的积分得出该区域中的目标个数.经过数学推导,得到密度函数的参数化模型,分析特征向量需要满足的条件以及加入图像分割对结果的影响. 由正则化风险最小化原理求取密度函数模型的参数,将密度函数的经验风险最小化问题简化为一个线性规划问题. 实验表明,该方法只需少量图像进行训练, 就可以准确地估计测试图像的目标数目. 对于高密度群体,该方法能够给出目标计数, 而不仅是密度等级估计.

关键词: 正则化风险最小化机器学习目标计数密度估计线性规划    
Abstract:

Current studies of object counting commonly ignore the spatial information of objects and encounter difficulties when dealing with high density object groups. An object counting approach was presented which estimated a density function for every input image, whose integral over any image region gives the count within that region. A parametric model of density function was built by mathematical derivation. The conditions that feature vectors should satisfy and the effects of image segmentation were analyzed. The parameters in the model of density function were estimated by the principle of regularized risk minimization, and the density function empirical risk minimization can be boiled down to a linear program. Experimental results show that the method can accurately estimate the object counts for testing images with only a few training images. For high density object groups, the approach also gives counts, not only density levels.

Key words: linear program    object counting    density estimation    regularized risk minimization    machine learning
出版日期: 2014-08-01
:  TN 911  
基金资助:

国家“973”重点基础研究发展规划资助项目(2012CB316400)

通讯作者: 于慧敏, 男, 教授     E-mail: yhm2005@zju.edu.cn
作者简介: 吴鹏洲(1988-), 男, 硕士生, 从事计算机视觉、图像处理的研究. E-mail: 21031130@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾雄
吴鹏洲
于慧敏

引用本文:

吴鹏洲,于慧敏,曾雄. 基于正则化风险最小化的目标计数[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.012.

WU Peng-zhou, YU Hui-min, ZENG Xiong. Object counting based on regularized risk minimization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.012.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.07.012        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I7/1226

1] LIN S F, CHEN J Y, CHAO H X. Estimation of number of people in crowded scenes using perspective transformation [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,  2001, 31(6): 645-654.
[2] DESCOMBES X, MINLOS R, ZHIZHINA E. Object extraction using a stochastic birth-and-death dynamics in continuum [J]. Journal of Mathematical Imaging and Vision, 2009, 33(3): 347-359.
[3] DAVIES A C, YIN J H, VELASTIN S A. Crowd monitoring using image processing [J]. Electronics and Communication Engineering Journal, 1995, 7(1):37-47.
[4] PARAGIOS N, RAMESH V. A MRF-based approach for real-time subway monitoring [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2001: I-1034-I-1040.
[5] MA R, LI L, HUANG W, et al. On pixel count based crowd density estimation for visual surveillance [C]∥Proceedings of IEEE Conference on Cybernetics and Intelligent System. [S.l.]: IEEE, 2004: 170-173.
[6] VELASTIN S A, YIN J H, DAVIES A C, et al. Automated measurement of crowd density and motion using image processing [C]∥Proceedings of IET International Conference on Road Traffic Monitoring and Control. [S.l.]: IET, 1994: 127-132.
[7] REGAZZONI C S, TESEI A. Distributed data fusion for real-time crowding estimation [J]. Signal Processing, 1996, 53(1): 47-63.
[8] CHO S Y, CHOW T W S, LEUNG C T. A neural-based crowd estimation by hybrid global learning algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1999, 29(4): 535-541.
[9] MARANA A, DA COSTA L, LOTUFO R, et al. On the efficacy of texture analysis for crowd monitoring [C]∥Proceedings of IEEE International Symposium on Computer Graphics, Image Processing, and Vision. [S.l.]: IEEE, 1998: 354-361.
[10] LI W, WU X, MATSUMOTO K, et al. Crowd density estimation: an improved approach [C]∥Proceedings of IEEE International Conference on Signal Processing. [S.l.]: IEEE, 2010: 1213-1216.
[11] VERONA V V, MARANA A N. Wavelet packet analysis for crowd density estimation [C]∥Proceedings of the IASTED International Symposia on Applied Informatics. Innsbruck: [s.n.], 2001.
[12] RAHMALAN H, NIXON M, CARTER J. On crowd density estimation for surveillance [C]∥Proceedings of The Institution of Engineering and Technology Conference on Crime and Security. [S.l.]: IET, 2006: 540-545.
[13] WU X Y, LIANG G Y, LEE K K, et al. Crowd density estimation using texture analysis and learning [C]∥ Proceedings of IEEE International Conference on Robotics and Biomimetics. [S.l.]: IEEE, 2006: 214-219.
[14] CHAN A B, LIANG Z, VASCONCELOS N. Privacy preserving crowd monitoring: counting people without people models or tracking [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2008: 17.
[15] CHAN A B, VASCONCELOS N. Bayesian Poisson regression for crowd counting [C]∥Proceedings of IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2009: 545-551.
[16] RYAN D, DENMAN S, FOOKES C, et al. Crowd counting using multiple local features [C]∥Proceedings of IEEE Conference on Digital Image Computing: Techniques and Applications. [S.l.]: IEEE, 2009: 81-88.
[17] SCHREIBER D, RAUTER M. A CPU-GPU hybrid people counting system for real-world airport scenarios using arbitrary oblique view cameras [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2012: 83-88.
[18] MURPHY K P. Machine learning: a probabilistic perspective [M]. [S.l.]: MIT, 2012: 204-207.
[19] LEMPITSKY V, ZISSERMAN A. Learning to count objects in images [C]∥Proceedings of Neural Information Processing Systems (NIPS). Vancouver: Curran Associates Inc,2010.
[20] BENTLEY J L. Programming pearls: perspective on performance [J]. Communications of the ACM, 1984, 27(11): 1087-1092.
[21] BENTLEY J L. Programming pearls: algorithm design techniques [J]. Communications of the ACM, 1984, 27(9): 865-871.
[22] SRA S, NOWOZIN S, WRIGHT S J. Optimization for machine learning [M]. [S.l.]: MIT, 2012: 185-196.
[23] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 

[1] 许贤, 蔡晖映, 孙凤先, 罗尧治. 基于线性规划的张拉整体结构位移优化控制[J]. 浙江大学学报(工学版), 2017, 51(11): 2093-2100.
[2] 孙跃, 赵志斌, 苏玉刚, 唐春森. 非接触电能传输系统参数非线性规划[J]. J4, 2013, 47(2): 353-360.
[3] 赵立杰, 柴天佑, 袁德成, 刁晓坤. 增强操作工况识别可靠性的概率PLS-ELM方法[J]. J4, 2013, 47(10): 1747-1752.
[4] 谢中凯, 刘国华, 吴志根. 基于传递熵的梁结构损伤动力识别[J]. J4, 2012, 46(10): 1880-1886.
[5] 王选贺, 刘济林. 基于核密度估计的遮挡人体跟踪[J]. J4, 2011, 45(3): 412-418.
[6] 曹玉苹, 田学民. 基于信息散度的过程故障检测与诊断[J]. J4, 2010, 44(7): 1315-1320.
[7] 肖南, 肖新, 董石麟. 张力结构形状调整优化分析[J]. J4, 2009, 43(8): 1513-1519.
[8] 邹俊 傅新 黄硕 张哲谦 杨华勇 任玉军. 基于主成分分析的液压泥炮系统泄漏监测[J]. J4, 2009, 43(2): 197-201.
[9] 宓云軿 王晓萍 金鑫. 基于机器学习的水质COD预测方法[J]. J4, 2008, 42(5): 790-793.
[10] 贺益君 陈德钊. 适于混合整数非线性规划的混合粒子群优化算法[J]. J4, 2008, 42(5): 747-751.
[11] 黄启春 刘仰光 何钦铭. 基于支持向量机的增量式算法[J]. J4, 2008, 42(12): 2121-2126.
[12] 王丽军 张宏建 李希. 对二甲苯氧化反应器网络的合成[J]. J4, 2005, 39(9): 1413-1417.