Please wait a minute...
浙江大学学报(工学版)
优秀论文推荐     
基于鲁棒观测器的肘关节鲁棒自适应控制
罗高生, 顾临怡, 李林
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Robust adaptive control of elbow based on robust observer
LUO Gao-sheng, GU Lin-yi, LI Lin
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2470 KB)  
摘要:
针对伺服阀控制的、双螺旋副传动的七功能机械手肘关节存在液压系统强非线性、易受外界环境温度和压力变化引起的参数不确定性、外界未知强干扰和仅有位置和油液压力状态反馈的控制特点,提出基于鲁棒观测器的输出反馈鲁棒自适应控制方法.该方法利用反演控制器设计方法对耦合的不确定系统参数和未知状态进行解耦,结合鲁棒观测器和鲁棒自适应控制器设计方法分别对未知状态和不确定参数进行观测和估计,使用李雅普诺夫稳定性理论保证了系统全局渐进稳定的控制性以及系统状态的有界性,解决了同时存在系统参数不确定性和部分未知状态相耦合的鲁棒控制问题.以国家高科技发展计划4 500 m深海作业系统的七功能主从液压机械手肘关节作为研究对象,使用提出的控制方法进行在未知外界干扰下的对比研究.实验结果表明,闭环系统可以很好地跟踪参考轨迹,具有较强的鲁棒性,能够获得令人满意的稳态精度和动态性能;修正后的参数自适应律能够保证在外界未知干扰下估计参数的有界性.
关键词: 双螺旋副传动反演控制液压系统鲁棒观测器输出反馈鲁棒自适应控制    
Abstract:

 A robust output feedback adaptive control method based on robust observer was proposed based on the fact that the servo-valve controlled elbow joint of a 7-function hydraulic manipulator with double-screw-pair transmission has the control characteristics of strong nonlinearity of the hydraulic system, parametric uncertainties susceptible to temperature and pressure changes of the external environment, unknown external disturbances, and only position and pressure state feedback. The design method of the backstepping controller was utilized to decouple the uncertain system parameters and unknown states. The robust estimator and robust adaptive controller design method were combined to estimate unknown states and uncertain parameters. The globally asymptotic stability and boundedness of system states were guaranteed by using Lyapunov stability theory. Then the robust control problems of coupled uncertain system parameters and partially unknown states were successfully solved. Using the elbow joint of the 7-function master-slave hydraulic manipulator for the 4 500 meter Deep-sea Working System as the research subject, a comparative study was conducted by using the control method under unknown external disturbances. Experimental results show that the close-loop system with strong robustness can track the desired reference trajectory with satisfied dynamic performance and steady accuracy. The modified parameter adaptive laws can also guarantee the boundedness of the estimated parameters. 

Key words:    double-screw-pair transmission    robust observer    robust output feedback adaptive control
出版日期: 2014-06-12
:  TP 273  
基金资助:

国家“863”高技术研究发展计划资助项目(2008AA092301).

通讯作者: 顾临怡,男,教授,博导.     E-mail: lygu@zju.edu.cn
作者简介: 罗高生(1975—),男,助理研究员,博士,从事深海水下七功能液压机械手、水下运载器和水下作业工具的研究. E-mail: kendysnow@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗高生
李林
顾临怡

引用本文:

罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.10.000.

LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.10.000.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.10.000        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I5/1

[1] WHATTON J. Fluid power systems [M]. New Jersey: Prentice Hall, 1989: 48-75.
[2] MERRIT H E. Hydraulic control systems [M]. New York: Willey, 1967: 34-67.
[3] 施生达.潜艇操纵性[M].北京:国防工业出版社, 1995: 200-236.
[4] FITZSIMONS P M, PALAZZOLO J J. Part I: modeling of a one-degree-of-freedom active hydraulic mount [J].  Journal of Dynamic Systems, Measurement and Control, 1996, 118(3): 439-442.
[5] FITZSIMONS P M, PALAZZOLO J J. Part II: control[J]. Journal of Dynamic Systems, Measurements and control, 1996, 118(3): 443-448.
[6] ALLEYNE A, HEDRICK J K. Nonlinear adaptive of active suspension [J]. IEEE Transactions on Control Systems Technology, 1995,3: 94-101.
[7] SIROUSSPOUR M R, SALCUDEAN S E. Nonlinear control of hydraulic robots [J]. IEEE Transactions on Robotics and Automation, 2001, 17(2).
[8] WIT C, CANUDAS D, FIXOT N. Adaptive control of robot manipulators via velocity estimated feedback [J]. IEEE Transaction on Automation Control, 1992, 37(8): 1234-1237.
[9] WIT C, CANUDAS D, FIXOT N, et al. Trajectory tracking in robot manipulators via nonlinear estimated state feedback [J]. IEEE Transactions on Robotics and Automation, 1992, 8(1): 138-144.
[10] WIT C, CANUDAS D, SLOTINE J J E. Sliding observers for robot manipulators [J]. Automatica, 1991, 27(5): 859864.
[11] WIT C, CANUDAS D, ASTROM K J, et al. Computed torque control via nonlinear observers [J]. International Journal of Communication Systems, 1990, 4(6): 443-452.
[12] DAVILA J, FRIDMAN L, LEVANT A. Second-order sliding-mode observer for mechanical systems [J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1785-1789.
[13] DAVILA J, FRIDMAN L. A direct algebraic approach to observer design under switching measurement equations [J]. IEEE Transactions on Automatic Control, 2004, 49(11): 2044-2049.
[14] FILIPESCU A, STANCU A, STAMATESCU G. On-line parameter estimation and adaptive gain smooth sliding observer-controller for robotic manipulator control [C]∥ IEEE International Conference on Control and Automation. Guangzhou: IEEE, 2007.
[15] ZHU K W, GU L Y. A MIMO nonlinear robust controller for work-class ROVs positioning and trajectory tracking control [C]∥IEEE Proceedings of 2011 Chinese Control and Decision. [S.l.]: IEEE, 2011: 2565-2570.
[16] YAO B, XU L. Observer-based adaptive robust control of a class of nonlinear systems with dynamic uncertainties [J]. International Journal of Robust and Nonlinear Control, 2001, 11: 335-356.
[17] FILIPPOV A F. Differential equation with discontinuous right-hand side [J]. Transactions of the American Mathematical Society, 1960, 62: 199.
[18] KRISTIC M, KANELLAKOPOULOS I, KOKOTOVIC P. Nonlinear and adaptive control design [M]. New York: Wiley, 2005: 2155.
[19] SLOTINE J J E, LI W. Applied nonlinear control [M]. New Jersey: Prentice, 1991: 49-65.
[20] YAO B. Adaptive robust control of nonlinear systems with application to control of mechanical systems [D]. Berkeley: University of California, 1996.
[21] YAO B. Advanced motion control: from classical PID to nonlinear adaptive robust control [J]. The 11th IEEE International Workshop on Advanced Motion Control, Nagaoka: IEEE, 2010: 21-24.
[22] YAO B. Desired compensation adaptive robust control [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2009, 131: 06100017.
[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[3] 赵鹏宇,陈英龙,周华. 油液混合动力工程机械系统及控制策略研究综述[J]. 浙江大学学报(工学版), 2016, 50(3): 449-459.
[4] 赵鹏宇,陈英龙,周华. 油液混合动力工程机械系统及控制策略研究综述[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[5] 殷秀兴, 顾亚京, 林勇刚, 叶杭冶, 李伟. 复现风力机五自由度载荷的加载控制方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1470-1477.
[6] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.
[7] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[8] 黄克, 周奇才, 赵炯, 熊肖磊. 盾构液压系统状态预测[J]. J4, 2013, 47(8): 1437-1443.
[9] 唐志国, 李元春, 刘木林. 机械臂协调操作柔性负载鲁棒神经网络控制[J]. J4, 2010, 44(7): 1394-1399.
[10] 邢彤, 杨华勇, 龚国芳. 盾构刀盘驱动液压系统效率对比研究[J]. J4, 2010, 44(2): 358-363+372.