Please wait a minute...
J4  2014, Vol. 48 Issue (4): 704-710    DOI: 10.3785/j.issn.1008-973X.2014.04.021
土木工程     
2种风场下格构式圆钢塔的天平测力试验研究
沈国辉1, 项国通1, 邢月龙2, 郭勇2, 孙炳楠1, 楼文娟1
1. 浙江大学 土木工程学系, 浙江 杭州 310058; 2. 浙江省电力设计院,浙江 杭州 310007
Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows
SHEN Guo-hui1, XIANG Guo-tong1, XING Yue-long2, GUO Yong2, SUN Bing-nan1, LOU Wen-juan1
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; 2. Electric Power
Design Institute of Zhejiang Province, Hangzhou 310007, China
 全文: PDF(1153 KB)  
摘要:

针对格构式圆截面钢管塔天平测力风洞试验的体型系数是否需要修正的问题,采用6种体型的圆钢塔在均匀流和B类地貌下进行测力试验.根据基底剪力和基底弯矩计算输电塔的整体体型系数,对比2类风场下的数据以获得体型系数在均匀流时的修正系数.研究表明,按基底弯矩和基底剪力计算的体型系数比较接近;输电塔顺线向体型系数的最大值出现在均匀流的15°风向和B类地貌流场的0°风向;在圆钢塔的天平测力风洞试验中,B类地貌风场下测试获得的体型系数更加合理,均匀流下建议进行体型系数的修正.

关键词: 输电塔风荷载测力天平试验体型系数雷诺数    
Abstract:

In order to analyze the problem that the body shape coefficients of steel latticed towers with cylindrical members obtained from force balance tests in wind tunnel need to be modified or not, six towers with different shapes were tested both in the uniform flow and in the boundary layer flow simulated category B. The base shear forces and the base bending moments were used to calculate the total body shape coefficients of the towers. The modification factors of the body shape coefficients were determined by comparing the data obtained from the two types of flow. Results show that the total body shape coefficients calculated using the base shear forces and the base bending moments are quite close. The maximum values of along-wind body shape coefficients occur at wind angle of 15 in the uniform flow and at wind angle of 0 in the boundary layer flow simulated category B. When using force balance tests to obtain the body shape coefficients of steel latticed towers with cylindrical members, the data obtained in boundary layer simulated category B are much more reasonable and the data obtained in the uniform flow are suggested to be modified.

Key words: transmission tower    wind load    force balance test    body shape coefficient    Reynolds number
出版日期: 2014-05-04
:  TU 312  
基金资助:

国家自然科学基金资助项目(51178425).

作者简介: 沈国辉(1977—),男,副教授,从事结构风工程和结构计算分析的研究. E-mail: ghshen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.

SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, GUO Yong, SUN Bing-nan. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows. J4, 2014, 48(4): 704-710.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.04.021        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I4/704

[1] GB50009-2001,建筑结构荷载规范[S].北京:中国建筑工业出版社, 2002.
[2] DL/T 5154-2002, 架空送电线路杆塔结构设计技术规定[S]. 北京: 中国电力出版社, 2002.
[3] 沈国辉,孙炳楠,楼文娟.复杂体型高层建筑单体和双塔时的风荷载[J].浙江大学学报:工学版,2005, 39(8): 1229-1233.
SHEN Guo-hui, SUN Bing-nan, LOU Wen-juan. Wind load on complicated-shape tall building under single building and double-tower conditions [J]. Journal of Zhejiang University: Engineering Science, 2005, 39(8): 1229-1233.
[4] 楼文娟,孙炳楠,叶尹.高耸塔架横风向动力风效应[J].土木工程学报, 1999, 32(6): 67-71.
LOU Wen-juan, SUN Bing-nan, YE Yin. Across-wind dynamic response of tall latticed towers [J]. China Civil Engineering Journal, 1999, 32(6): 6771.
[5] 程志军,付国宏,楼文娟,等.高耸格构式塔架风荷载试验研究[J].实验力学,2000, 15(1): 51-55.
CHENG Zhi-jun, FU Guo-hong, LOU Wen-juan, et al. Research for the wind force on high-rise latticed tower [J]. Journal of Experimental Mechanics, 2000, 15(1): 51-55.
[6] 郭勇.大跨越输电塔线体系的风振响应及振动控制研究[D].杭州:浙江大学, 2006: 25-30.
GUO Yong. Studies on wind-induced dynamic response and vibration control of long span transmission line system [D]. Hangzhou: Zhejiang University, 2006: 25-30.
[7] 肖春云,陈政清,牛华伟,等.高压输电塔体型系数试验研究[C]∥第十四届全国结构风工程学术会议论文集.北京:[s.n.], 2009: 401-404.
XIAO Chun-yun, CHEN Zheng-qing, NIU Hua-wei, et al. Experimental investigation on body shape coefficients of high voltage transmission tower \
[C\]∥The 14th National Conference on Structural Wind Engineering. Beijing: \
[s. n.\], 2009: 401-404.
[8] 邓洪洲,张建明,帅群,等.输电钢管塔体型系数风洞试验研究[J].电网技术,2010, 34(9): 190-194.
DENG Hong-zhou, ZHANG Jian-ming, SHUAI Qun, et al. Wind-tunnel investigation on pressure coefficient of steel tubular transmission tower [J]. Power System Technology, 2010, 34(9): 190-194.
[9] 邹良浩,梁枢果,邹垚,等.格构式塔架风载体型系数的风洞试验研究[J].特种结构, 2008, 25(5): 41-43.
ZOU Liang-hao, LIANG Shu-guo, ZOU Yao, et al. Investigation on wind load shape coefficient of lattice towers by wind tunnel tests [J]. Special Structure, 2008, 25(5): 41-43.
[10] Architectural Institute of Japan. Recommendations for loads on buildings [M]. Japan: Architectural Institute of Japan, 2004.
[11] GB50009-2012,建筑结构荷载规范[S].北京:中国建筑工业出版社, 2012.
[12] EMIL S, ROBERT H S. 风对结构的作用:风工程导论[M].上海: 同济大学出版社,1992: 303-304.
[13] DAVID S. Some effects of intense turbulence on the aerodynamics of a circular cylinder at sub-critical Reynolds number [J]. Journal of Fluid Mechanics, 1972, 52(3): 543-563.
[14] MASARU K, YASUHIRO S, MIKIO A, et al. A contribution to the free-stream turbulence effect on the flow past a circular cylinder [J]. Journal of Fluid Mechanics, 1982, 115(2): 151-164.
[15] 李加武,林志兴,项海帆.桥梁断面三分力系数的雷诺数效应[J].同济大学学报:自然科学版, 2004, 32(10): 1328-1333.
LI Jia-wu, LIN Zhi-xing, XIANG Hai-fan. Reynolds number effect of mean force coefficient of two kinds of typical bridge deck section [J]. Journal of Tongji University: Natural Science, 2004, 32(10): 1328-1333.

[1] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[2] 谢恩献, 袁行飞, 陈冲. 台风作用下弦支网壳结构动力失效[J]. 浙江大学学报(工学版), 2017, 51(2): 238-244.
[3] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[4] 桂龙辉, 谢霁明, 林颖孜, 张鸿玮. 悬挑环形廊桥的气动弹性模型试验[J]. 浙江大学学报(工学版), 2017, 51(11): 2121-2129.
[5] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[6] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.
[7] 柯世堂, 王同光, 陈少林, 葛耀君. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报(工学版), 2014, 48(4): 686-692.
[8] 钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.
[9] 应济, 曹超, 焦致凯. 无阀微泵损失系数及整流效率[J]. J4, 2013, 47(2): 249-255.
[10] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.
[11] 楼文娟,杨伦,陈勇,阎东. 覆冰导线静张力对输电塔横担的作用特征[J]. J4, 2013, 47(11): 1917-1925.
[12] 楼文娟, 姜雄, 夏亮, 金晓华, 王振华. 长横担输电塔风致薄弱部位及加强措施[J]. J4, 2013, 47(10): 1798-1784.
[13] 汤珂, 张玙, 唐文涛, 金滔. 管内交变流动速度相位侧向分布特性[J]. J4, 2012, 46(4): 604-609.
[14] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[15] 沈国辉, 余关鹏, 孙炳楠, 楼文娟, 李庆祥, 杨仕超. 大型冷却塔风致响应的干扰效应[J]. J4, 2012, 46(1): 33-38.