Please wait a minute...
J4  2014, Vol. 48 Issue (3): 430-435    DOI: 10.3785/j.issn.1008-973X.2014.03.008
机械工程     
基于人机5杆模型的下肢外骨骼系统设计
杨巍1,张秀峰2,杨灿军1,吴海杰1
1.浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027;2.国家康复辅具研究中心,北京 100176
Design of a lower extremity exoskeleton
based on 5-bar human machine model
YANG Wei1, ZHANG Xiu-feng2, YANG Can-jun1, WU Hai-jie1 
1. State Key Laboratory of Fluid Power and Control,Zhejiang University,Hangzhou 310027,China;
2. National Research Center for Rehabilitation Technical Aids,Beijing 100176,China
 全文: PDF(2593 KB)  
摘要:

针对日益增多的脑卒中病人和脊椎损伤病人康复训练需求,分析了人体下肢驱动自由度,设计出一种基于跑步机上行走训练的下肢外骨骼系统,将康复理疗师的训练经验与机器人的大功率以及可重复操作性集成于一体.利用人机耦合系统5杆模型,建立动力学方程并推导出髋、膝关节驱动力矩,为对应关节的驱动电机选型提供参考依据.为了获取正常人体在跑步机上行走的步态,利用光学动作捕捉系统采集正常人体在跑步机上行走时的特征点数据,结合人机耦合系统5杆模型推导出髋、膝关节角度值,作为患者在跑步机上康复训练的标准步态的参考.通过患者康复训练临床实验,验证了系统的可行性与可靠性,其实验结果与患者实际病情相符合.该外骨骼系统为脑卒中病人提供了一种科学的康复训练平台.

关键词: 下肢康复外骨骼机器人人机耦合系统    
Abstract:

Considering the increasing requirements of rehabilitation training for stroke patients and spinal cord injury (SCI) patients, this work analyzed the  driving degrees of freedom of human lower limbs, and designed a lower extremity exoskeleton system based on treadmill, which combined the training experience of physiotherapists and the high-power, repeatability of robot. Based on the 5-bar human machine model, the dynamic equation was established and the driving torques of hip and knee joints were calculated, which could be used as reference of motor selection for corresponding joints. In order to get normal gait data on treadmill, optical motion capture system was used to obtain the data of feature points while a normal person was walking on the treadmill. And the 5-bar human machine model was used to obtain the gait data. The results were regarded as reference of standard gait data of the exoskeleton system. Clinical experiments were conducted, which proved the feasibility and reliability of the exoskeleton system, and the experimental results conformed to the symptom of the patients.This exoskeleton system provides stroke patients with a scientific training platform for rehabilitation.

Key words:  lower limbs rehabilitation    exoskeleton    robot    human machine coupling system
出版日期: 2014-04-02
:  TH 122  
基金资助:

国家自然科学基金创新研究群体科学基金资助项目(51221004).

通讯作者: 杨灿军,男,教授,博导.     E-mail: ycj@zju.edu.cn
作者简介: 杨巍(1988-),男,博士生,从事外骨骼人机智能系统研究.E-mail:zjuaway@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨巍,张秀峰,杨灿军,吴海杰. 基于人机5杆模型的下肢外骨骼系统设计[J]. J4, 2014, 48(3): 430-435.

YANG Wei, ZHANG Xiu-feng, YANG Can-jun, WU Hai-jie. Design of a lower extremity exoskeleton
based on 5-bar human machine model. J4, 2014, 48(3): 430-435.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.03.008        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I3/430

[1] 池明宇,赵春华,李文志,等. 偏瘫患者肢体康复方法[M]. 北京:人民卫生出版社,2007:3-6.
[2] YANG Yin, YANG Can-jun, LEE K, et al. Model-based fuzzy adaptation for control of a lower extremity rehabilitation exoskeleton[C]∥ International Conference on Advanced Intelligent Mechatronics. Singapore: Suntec Convention and Exhibition Center, 2009: 350-355.
[3] COLOMBO G.Treadmill training with the robotic orthosis “lokomat”: new technical features and results from multi-center trial in chronic spinal cord injury [J]. International Journal of Rehabilitation Research, 2004, 27(1): 92-93.
[4] VENEMAN J F, EKKELENKAMP R, KRUIDHOF R, et al. A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots [J]. Robotics Research, 2006, 25(3):261-281.
[5] VENEMAN J F, KRUIDHOF R, HEKMAN E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 379-386.
[6] BANALA S K, KIM S H, AGRAWAL S K, et al. Robot assisted gait training with active leg exoskeleton (ALEX) [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(1):2-8.
[7] WINFREE K N, STEGALL P, AGRAWAL S K. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II[C]∥ International Conference on Rehabilitation Robotics, Switzerland: Rehab Week Zurich, ETH Zurich Science City, 2011: 16.
[8] STEGALL P, WINFREE K N, AGRAWAL S K. Degrees-of-freedom of a robotic exoskeleton and human adaptation to new gait templates[C]∥ International Conference on Robotics and Automation.River Center, Saint Paul, Minnesota, USA: \
[s.n.\], 2012:4986-4990.
[9] 张晓超. 下肢康复训练机器人关键技术研究[D]. 哈尔滨:哈尔滨工程大学, 2009: 78-82.
Zhang Xiao-chao. Key Technology research on lower extremity robot for rehabilitation [D]. Haerbin: Harbin Engeering University, 2009: 7882.
[10] 冯治国. 步行康复训练助行腿机器人系统[D].上海: 上海大学, 2009: 11-15.
Feng Zhi-guo. On Exoskeleton robot for gait rehabilitation [D]. Shanghai: Shanghai University, 2009: 11-15.
[11] 牛彬. 可穿戴式的下肢步行外骨骼控制机理研究与实现[D]. 杭州: 浙江大学, 2006: 1011.
NIU Bin. Study on the design and control of a wearable exoskeleton leg for humans walking power augmentation [D]. Hangzhou: Zhejiang University, 2006: 10-11.
[12] RACINE J L. Control of a lower extremity exoskeleton for human performance amplification [D]. Berkeley: University of California,Berkeley, 2003:23-24.
[13] 贺廉云. 双足机器人的行走模型及步态规划[J]. 信息技术与信息化,2008(2):64-66.
HE Lian-yun. The walk model and the gait planning of biped robot[J]. Information Technology and Informatization, 2008(2):6466.
[14] 董亦鸣.下肢康复医疗外骨骼训练控制系统研究与初步实现[D]. 杭州: 浙江大学, 2008: 4054.
DONG Yi-ming. Study and realization of the training control system of a rehabilitation exoskeleton orthosis for lower limbs [D]. Hangzhou: Zhejiang University, 2006: 1011.
[15] 郑秀瑗,高云峰,贾书惠,等. 现代运动生物力学[M]. 北京: 国防工业出版社,2007.
[16] STANSFIELD B. Clinical gait analysis [EB/OL]. [2002-04-16]. http://www.clinicalgaitanalysis.com/.

[1] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.
[2] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[3] 王伟, 王进, 陆国栋. 基于四阶矩估计的机器人运动可靠性分析[J]. 浙江大学学报(工学版), 2018, 52(1): 1-7.
[4] 何雪军, 王进, 陆国栋, 刘振宇, 陈立, 金晶. 基于三角网切片及碰撞检测的工业机器人三维头像雕刻[J]. 浙江大学学报(工学版), 2017, 51(6): 1104-1110.
[5] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[6] 张铭奎, 程文明, 刘放. 助力外骨骼负载特征与驱动特征耦合效应[J]. 浙江大学学报(工学版), 2017, 51(4): 807-816.
[7] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[8] 王扬威, 闫勇程, 刘凯, 赵东标. 仿生机器魟鱼研制与游动性能实验研究[J]. 浙江大学学报(工学版), 2017, 51(1): 106-112.
[9] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[10] 何雪军,王进,陆国栋,陈立. 岛中含湖型截面的环切刀轨连接方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1654-1661.
[11] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[12] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[13] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[14] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[15] 何雪军, 王进, 陆国栋, 陈立. 基于蚁群算法的机器人图像绘制序列优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1139-1145.