Please wait a minute...
J4  2014, Vol. 48 Issue (2): 327-333    DOI: 10.3785/j.issn.1008-973X.2014.02.021
能源工程     
Taconis热声振荡的数值模拟
郭轶楠1, 雷刚2, 王天祥2, 王凯1, 孙大明1
1浙江大学 制冷与低温研究所,浙江 杭州,310027;2航天低温推进剂技术国家重点实验室,北京,100028
Numerical simulation of Taconis thermoacoustic oscillation
GUO Yi-nan1, LEI Gang2, WANG Tian-xiang2, WANG Kai1, SUN Da-ming1*
1. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China;
2. State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China
 全文: PDF(1253 KB)  
摘要:

针对Taconis振荡对低温液体测量造成严重干扰并且极大增强低温储液的漏热问题,基于计算流体动力学(CFD)模拟方法,对氦气为介质的单端开口细长管内发生的Taconis振荡进行研究,低温端和常温端的温度分别为8和300 K.通过数值模拟,获得包括热流密度、声流分布等在内的热声参数和完整的Taconis热声起振过程,通过对管壁和气体介质之间的热量传递过程和时均热流密度以及管内声功分布进行分析,定量揭示Taconis振荡的发生机理.模拟结果表明,在线性热声理论中可以忽略的径向速度在Taconis振荡中不能被忽略,根据模拟结果将Taconis管边界层划分为发声区和耗散区2个区域,其中发声区为热声转换区域,耗散区以泵热损失和黏性耗散为主.

关键词: Taconis振荡自激热声驻波计算流体动力学(CFD)    
Abstract:

Aiming at the issue that Taconis oscillation not only causes disturbing effect to the measurements of cryogenic fluids but also increases thermal load significantly, Taconis oscillation in a thin quarter-wavelength tube filled with helium with one end at 8 K and the other end at 300 K was studied with computational fluid dynamics(CFD) method. By numerical simulation, wall heat flux, acoustic power flow distribution, the whole onset process of Taconis thermoacoustic oscillation and some other important parameters are obtained successfully. Taconis oscillation mechanism was revealed by studying the heat transfer process between the gas and tube wall, the wall heat flux, and the acoustic power distribution in the Taconis tube. It is shown that the radial velocity which is ignored in the linear thermoacoustic theory can’t be ignored in Taconis oscillation simulation, the boundary luyer of Taconis tube can be divided into generating area and dissipating area based on the simulation results, and thermoacoustic conversion occurs in generating area while heat pumping and viscous loss dominate the dissipating area.

Key words: Taconis    Self-excited oscillation    thermoacoustic    standing wave    computational fluid dynamics(CFD)
出版日期: 2014-03-03
:  TK 123  
基金资助:

国家自然科学基金资助项目( 61077035);航天低温推进剂技术国家重点实验室研究基金;教育部留学回国人员启动基金(教外司留[2010] 609号).

通讯作者: 孙大明,男,副教授.     E-mail: sundaming@zju.edu.cn
作者简介: 郭轶楠(1989—),男,硕士生,主要从事热声热机研究.E-mail: gynm2011@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.

GUO Yi-nan, LEI Gang, WANG Tian-xiang, WANG Kai, SUN Da-ming. Numerical simulation of Taconis thermoacoustic oscillation. J4, 2014, 48(2): 327-333.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.02.021        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I2/327

[1] LUCK H, TREPP C. Thermoacoustic oscillations in cryogenics. Part 2: applications [J].Cryogenics, 1992, 32(8): 698702.
[2] QIU L M, LOU P, WANG K, et al. Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen [J]. Chinese Science Bulletin, 2012, 57: 1-4.

[3] WANG K, QIU L M,WANG B, et al. A standing-wave thermoacoustic engine driven by liquid nitrogen [C]∥ AIP Conference Proceedings. Spokane: American Institute of Physics, 2012, 1434(57):351-358.
[4] TACONIS K W, BEENAKKER J J M, NIER A O C, et al. Measurements concerning the vapour-liquid equilibrium of solutions of He3 in He4 below 2.19 °K [J]. Physical Amsterdam, 1949, 15: 733-739.
[5] ROTT N. Damped and thermally driven acoustic oscillations in wide and narrow tubes [J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1969, 20: 230-243.
[6] ROTT N. Thermally driven acoustic oscillations. Part II: Stability limit for helium [J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1973, 24: 54.
[7] ROTT N. Thermally driven acoustic oscillations. part Ш: second-order heat flux [J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1975, 26: 43-49.
[8] YAZAKI T, TOMINAGA A, NARAHARA Y. Experiments on thermally driven acoustic oscillations of gaseous helium [J]. Journal of Low Temperature Physics, 1987, 41: 45-60.
[9] SUGIMOTO N, SHIMIZU D. Boundary-layer theory for Taconis oscillations in a helium-filled tube [J]. Physics Of Fluids, 2008, 20(10), 10410210410211.
[10] SHIMIZU D, SUGIMOTO N. Physical Mechanisms of Thermoacoustic Taconis Oscillations [J]. Journal of the Physical Society of Japan, 2009, 78(9), 0944010944016
[11] SHIMIZU D, SUGIMOTO N. Numerical study of thermoacoustic Taconis oscillations [J]. Journal Of Applied Physics, 2010, 107(3), 03491003491011
[12] 余国瑶. 热声发动机自激振荡过程及热声转换特性研究 [D].北京:中国科学院理化技术研究所, 2008.
YU Guo-yao. Study of spontaneous oscillation and thermoacoustic conversion characteristics of thermoacoustic heat engines [D]. Beijing: Chinese Academy of Sciences :Technical Institute of Physics and Chemistry, 2008.

[1] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[2] 黎明, 封叶, 汤珂, 金滔. Gedeon声直流对四级行波热声发动机性能的影响[J]. 浙江大学学报(工学版), 2017, 51(8): 1633-1639.
[3] 罗凯, 孙大明, 章杰, 张宁, 王凯, 徐雅, 邹江. 用于热声发电的曲柄连杆式换能器工作特性[J]. 浙江大学学报(工学版), 2017, 51(8): 1619-1625.
[4] 章杰, 孙大明, 王凯, 罗凯, 张宁, 邹江. 行波热声发电系统的阻抗匹配[J]. 浙江大学学报(工学版), 2017, 51(3): 494-499.
[5] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[6] 张伟, 胡友德, 郑立荣. 基于频率可调驻波振荡器的芯片时钟系统设计[J]. 浙江大学学报(工学版), 2017, 51(1): 168-176.
[7] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.
[8] 孙大明, 王凯, 楼平, 赵益涛, 张学军, 邱利民. 斯特林型热声发动机驱动直线发电机的工作特性[J]. J4, 2013, 47(8): 1457-1462.
[9] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.
[10] 赵瑞东, 吴张华, 罗二仓, 戴巍. 热声系统基础实验台模拟[J]. J4, 2013, 47(2): 308-313.
[11] 麻剑锋, 刘凯凯, 徐雅, 沈新荣, 孙大明. 流体谐振型时均流诱导声振荡二维数值模拟[J]. J4, 2013, 47(2): 300-307.
[12] 孟庆龙, 王元. 基于CFD的空间场温度系统建模与控制[J]. J4, 2012, 46(8): 1478-1484.
[13] 汤珂,雷田,林小钢,金滔. 气-液与气体工质热声发动机性能对比[J]. J4, 2011, 45(7): 1244-1247.
[14] 赖碧翚, 邱利民, 李艳锋, 楼平, 孙大明. 基于热声网络理论的驻波热声发动机起振模拟[J]. J4, 2011, 45(6): 1130-1135.
[15] 赖碧翚, 邱利民, 李艳锋, 孙大明. 驻波热声发动机振荡频率转换特性[J]. J4, 2011, 45(10): 1781-1785.