Please wait a minute...
J4  2014, Vol. 48 Issue (2): 200-205    DOI: 10.3785/j.issn.1008-973X.2014.02.003
机械工程     
改进的柱塞泵流量脉动“实用近似”测试法
宋月超, 徐兵, 杨华勇, 张军辉
浙江大学 流体动力及机电系统国家重点实验室,浙江 杭州 310027
Modified practical approximate method for testing source flow of  piston pump
SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui
State Key Laboratory of Fluid Power and Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1349 KB)  
摘要:

针对现有“实用近似”法测试带有复杂出口管道液压泵的流量脉动精度低的问题,提出一种改进的柱塞泵流量脉动“实用近似”测试法.基于柱塞泵、参考管道和加载阀三维流场,建立“实用近似”法测试系统的有限元模型,该模型对参考管道压力信号仿真精度大于90%;采用该有限元模型和动边界理论获得柱塞泵复杂出口管道特征参数,提高“实用近似”法对泵源阻抗估算精度.对比改进的“实用近似”法和ISO“二次源”法测试的泵源流量脉动,结果表明,脉动幅值和最小流量值基本相同,因此,改进的“实用近似”法适于测试带有复杂出口管道的柱塞泵流量脉动.

关键词: &ldquo实用近似&rdquo有限元模型复杂出口管道泵源流量脉动    
Abstract:

A modified practical approximate method for the flow ripple measurement was proposed, in order to solve the problem that the test accuracy of the source flow of pump with complicated discharge pipe was low with the current method. A finite element model of test system utilizing practical approximate method was built based on the three-dimensional flow field of the axial piston pump, reference pipe and loading valve. The simulation accuracy of the pipe pressure is more than 90%. Based on the validated finite element model and dynamic boundary condition, the characteristic parameters of the complicated pump discharge pipe were obtained. The pump source impedance calculated by the proposed method was improved. Compared with the ISO secondary source method, the amplitude and minimum of the measured flow ripple of the proposed method was satisfying. Therefore, the modified practical approximate method can be used to test the source flow ripple of the hydraulic pump with complicated discharge pipe.

Key words: practical approximate method    finite element model    complicated pump discharge pipe    source flow
出版日期: 2014-03-03
:  TH 137  
基金资助:

国家“973”重点基础研究发展规划资助项目(2014CB046403);国家“十一五”科技支撑计划资助项目(2011BAF09B03).

通讯作者: 徐兵,男,教授,博导.     E-mail: bxu@zju.edu.cn
作者简介: 宋月超(1981—),男,博士生,主要从事流体传动及控制方面的研究.E-mail: syc19810807@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.

SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump. J4, 2014, 48(2): 200-205.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.02.003        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I2/200

[1] 马吉恩. 轴向柱塞泵流量脉动及配流盘优化设计研究[D]. 杭州:浙江大学, 2009: 12-36.
MA Ji-en. Study on flow ripple and valve plate optimization of axial piston pump[D]. Hangzhou: Zhejiang University, 2009: 12-36.
[2] BOWNS D E, EDGE K A, McCANDLISH D. Factors affecting the choice of a standard method for the determination of pump pressure ripple[C]∥MechE Conference Quiet Oil Hydraulic Systems. London UK: [s. n.]. 1980: 141-148.
[3] EDGE K A, WING T J. The measurement of the fluid borne pressure ripple characteristics of hydraulic components [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1983, 197(4): 247-254.
[4] EDGE K A, JOHNSTON D N. The secondary source method for the measurement of pump pressure ripple characteristics 1. Description of method [J]. Proceedings of the Institution of Mechanical Engineers Part A-journal of Power and Energy, 1990, 204 (1): 33-40.
[5] EDGE K A, JOHNSTON D N. The secondary source method for the measurement of pump pressure ripple characteristics 2. Experimental results [J]. Proceedings of the Institution of Mechanical Engineers Part A-journal of Power and Energy, 1990, 204 (1): 41-46.
[6] KOJIMA E, NAGAKURA H. Characteristics of fluid borne noise generated by fluid power pumps: 1st report, mechanism of generation of pressure pulsation in axial piston pump[J]. Bulletin of JSME, 1982, 199(25): 46-53.
[7] KOJIMA E. Experimental determining and theoretical predicting of source flow ripple generated by fluid power piston pumps[C]∥SAE International Off-Highway and Power plant Congress and Exposition. Milwaukee: SAE Special Publ. Topics in Hydraulics SP-1554, 2000: 73-82.
[8] PETTERSSON M, WEDDFELT K, PALMBERG J O. Methods of reducing flow ripple from fluid power piston pumps: a theoretical approach[J]. SAE Transactions, 1991, 100(2): 158-167.
[9] WEDDFELT K. Measurement of pump source characteristics by the two-microphone method [C]∥The Second Tampere International Conference on Fluid Power. Tampere Finland: [s. n.], 1991: 1-12.
[10] ERICSON L. Measurement system for hydrostatic pump flow pulsations[D]. Sweden: Linkpings Universitet, 2005: 56-82.
[11] JOHANSSON A. Design principles for noise reduction in hydraulic piston pumps-simulation, optimization and experimental verification[D]. Sweden: Linkpings Universitet, 2005: 31-52.
[12] 余经洪. 柱塞泵动态模型与降噪[D]. 上海:上海交通大学,1990: 41-92.
YU Jing-hong. Dynamic model and noise reduction of piston pump[D]. Shanghai: Shanghai Jiaotong University, 1990: 41-92.
[13] 盛敬超. 液压流体力学[M]. 北京:机械工业出版社, 1979: 102-135.
[14] ISO 10767-1-1996 Hydraulic fluid power-determination of pressure ripple levels generated in system and components part 1: precision method for pumps[S]. London: British Standards Institution, 1996.
[15] 徐兵,宋月超,杨华勇.复杂出口管道柱塞泵流量脉动测试原理研究[J].机械工程学报,2012.48(22): 162-167.
XU Bing, SONG Yue-chao, YANG Hua-yong. Investigation of Test principle of flow ripple generated by piston pump with complicated pipe [J]. Chinese Journal of Mechanical Engineering, 2012.48(22): 162-167.

[1] 张军阳, 郭阳, 扈啸. 二维矩阵卷积的并行计算方法[J]. 浙江大学学报(工学版), 2018, 52(3): 515-523.
[2] 张欣蔚, 王进, 陆国栋, 费少梅, 张东亮. 基于本体和形状文法的图案构形提取与重用[J]. 浙江大学学报(工学版), 2018, 52(3): 461-472.
[3] 贾文超, 胡荣贵, 施凡, 许成喜. 多特征关联的注入型威胁检测方法[J]. 浙江大学学报(工学版), 2018, 52(3): 524-530.
[4] 汤雪萍, 鲁天龙, 黄平捷, 侯迪波, 张光新. 行为规划和浓度梯度法联合的河道污染源追踪定位方法[J]. 浙江大学学报(工学版), 2018, 52(3): 543-551.
[5] 单政博, 王慧芳, 林冠强, 何奔腾. 考虑开断相对概率与后果的电网脆弱线路辨识[J]. 浙江大学学报(工学版), 2018, 52(3): 560-568.
[6] 劳立明, 陈英龙, 赵玉刚, 周华. 跟踪微分器的等效线性分析及优化[J]. 浙江大学学报(工学版), 2018, 52(2): 224-232.
[7] 陈星宇, 黄善和, 何昊哲. 探测频率对多频声学测沙技术测量误差的影响[J]. 浙江大学学报(工学版), 2018, 52(2): 307-316.
[8] 张庆科, 孟祥旭, 张化祥, 杨波, 刘卫国. 基于随机维度划分与学习的粒子群优化算法[J]. 浙江大学学报(工学版), 2018, 52(2): 367-378.
[9] 赵斌, 张松, 李剑峰. 基于零件摩擦学性能的磨削参数优化[J]. 浙江大学学报(工学版), 2018, 52(1): 16-23.
[10] 陆源源, 王慧, 宋春跃. 考虑列车混行的运行调度一体化优化方法[J]. 浙江大学学报(工学版), 2018, 52(1): 106-116.
[11] 李冰, 金涛, 陈帅. 提高SRAM PUFs密钥生成可靠性的方法[J]. 浙江大学学报(工学版), 2018, 52(1): 133-141.
[12] 谢颖, 黑亮声, 华邦杰, 张晓明. 电动汽车用永磁游标电机的设计与研究[J]. 浙江大学学报(工学版), 2018, 52(1): 184-191.
[13] 李显生, 孟凡淞, 郑雪莲, 任园园, 严佳晖. 交通冲突类型对驾驶人生理特性的影响[J]. 浙江大学学报(工学版), 2017, 51(9): 1720-1726.
[14] 秦培江, 马永亮, 韩超帅, 曲先强. 海上风机支撑结构的频域疲劳评估方法研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1712-1719.
[15] 张超, 臧勇, 管奔, 秦勤. 基于曲率积分的双金属复合板辊式矫直过程解析[J]. 浙江大学学报(工学版), 2017, 51(8): 1575-1586.