Please wait a minute...
J4  2014, Vol. 48 Issue (1): 161-167    DOI: 10.3785/j.issn.1008-973X.2014.01.025
航空航天技术     
基于改进遗传算法和序列二次规划的再入轨迹优化
张鼎逆,刘毅
同济大学 航空航天与力学学院,上海 200092
Reentry trajectory optimization based on improved genetic
algorithm and sequential quadratic programming
ZHANG Ding-ni, LIU Yi
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
 全文: PDF(795 KB)  
摘要:

提出结合改进遗传算法和序列二次规划法的可重复使用运载器再入轨迹优化方法,发挥了遗传算法(GA)对初值不敏感和全局收敛性强以及序列二次规划(SQP)法收敛速度快和精度高等优点,弥补了遗传算法优化结果的随机抖动、序列二次规划法对初始值敏感、收敛半径小和容易陷入局部极值等不足.将改进的遗传模拟退火罚函数法用于全局搜索设计空间,序列二次规划法用于局部优化,直接配点法用于将最优控制问题离散为非线性规划问题.算例结果表明,在没有初始估计的情况下,能够得到高精度的全局最优解,证明了该算法的正确性和有效性,验证了该算法具有初值不敏感和鲁棒性好的优点.

关键词: 直接配点法模拟退火遗传算法(GA)序列二次规划(SQP)可重复使用运载器    
Abstract:

An optimization method combining improved genetic algorithm with sequential quadratic programming was proposed for the design of reusable launch vehicle reentry trajectory. The advantages of being insensitive to initial values and global convergence of genetic algorithm(GA), and rapid convergence and high precision of sequential quadratic programming (SQP) were developed. The weakness including solution vibration of GA and small convergence radius, being sensitive to initial values and easy to fall into a local extremum of SQP was overcome. The improved genetic algorithm with simulated annealing penalty function was employed to globally search design space  and sequential quadratic programming for local optimization, while the  direct collocation method was used to discretize optimal control problem into nonlinear programming problem. A global high-precision solution can be obtained without initial guess. Results show the correctness, effectiveness, insensitive to initial values and good robustness of the algorithm.

Key words: direct collocation method    simulated annealing    genetic algorithm(GA)    sequential quadratic programming (SQP)    reusable launch vehicle
出版日期: 2014-02-21
:  V 412.4  
基金资助:

国家“863”高技术研究发展计划资助项目(2008AAXXX103).

通讯作者: 刘毅,男,教授.     E-mail: liuyi.chine@126.com
作者简介: 张鼎逆(1983-),男,博士生,从事飞行器总体优化设计、飞行动力学与控制、智能计算的研究.E-mail:siping4840@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张鼎逆,刘毅. 基于改进遗传算法和序列二次规划的再入轨迹优化[J]. J4, 2014, 48(1): 161-167.

ZHANG Ding-ni, LIU Yi. Reentry trajectory optimization based on improved genetic
algorithm and sequential quadratic programming. J4, 2014, 48(1): 161-167.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2014.01.025        http://www.zjujournals.com/xueshu/eng/CN/Y2014/V48/I1/161

[1] 阮春荣. 大气中飞行的最优轨迹[M]. 北京: 宇航出版社, 1987.
[2] HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation [J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4): 338-342.
[3] BETTS J T. Survey of numerical methods for trajectory optimization [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-206.
[4] VAVRINA M A, HOWELL K C. Global low-thrust trajectory optimization through hybridization of a genetic algorithm and a direct method [C]∥ AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Honolulu:\
[s.n.\], 2008:1-27.
[5] SENTINELLA M R, CASALINO L. Genetic algorithm and indirect method coupling for low-thrust trajectory optimization [C]∥42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Sacramento:\
[s.n.\],2006:1-10.
[6] SUBBARAO K, SHIPPEY B M. Hybrid genetic algorithm collocation method for trajectory optimization [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1396-1403.
[7] SHEN H X, ZHOU J P, PENG Q B, et al. Multi-objective interplanetary trajectory optimization combining low-thrust propulsion and gravity-assist maneuvers [J]. Science China Technological Sciences, 2012, 55(3): 841-847.
[8] ESLAMI M, SHAREEF H, KHAJEHZADEH M. Optimal design of damping controllers using a new hybrid artificial bee colony algorithm [J]. International Journal of Electrical Power and Energy Systems, 2013, 52: 42-54.
[9] ALSUMAIT J S, SYKULSKI J K, AL-OTHMAN A K. A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems [J]. Applied Energy, 2010, 87(5): 1773-1781.
[10] ESLAMI M, SHAREEF H, MOHAMED A, et al. Damping controller design for power system oscillations using hybrid GA-SQP [J]. International Review of Electrical Engineering-IREE, 2011, 6(2): 888-896.
[11] 吴剑锋, 朱学愚, 刘建立. 基于遗传算法的模拟退火罚函数方法求解地下水管理模型[J]. 中国科学E辑,1999, 29(05): 474-480.
WU Jian-feng, ZHU Xue-yu, LIU Jian-li. Using genetic algorithm based simulated annealing penalty function to solve groundwater management model [J]. Science in China (Series E), 1999, 29(05): 474-480.
[12] 吴志远, 邵惠鹤, 吴新余. 基于遗传算法的退火精确罚函数非线性约束优化方法[J]. 控制与决策, 1998, 13(2): 136-140.
WU Zhi-yuan, SHAO Hui-he, WU Xin-yu. Annealing accuracy penalty function based nonlinear constrained optimization method with genetic algorithms [J]. Control and Decision, 1998, 13(2): 136-140.
[13] DEHDARI V, OLIVER D S, DEUTSCH C V. Comparison of optimization algorithms for reservoir management with constraints-a case study [J]. Journal of Petroleum Science and Engineering, 2012, 100: 41-49.
[14] MAQSOOD A, GO T H. Optimization of transition maneuvers through aerodynamic vectoring [J]. Aerospace Science and Technology, 2012, 23(1): 363-371.
[15] GRAICHEN K, PETIT N. Constructive methods for initialization and handling mixed state-input constraints in optimal control [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1334-1343.

[1] 袁友伟, 余佳, 郑宏升, 王娇娇. 基于新颖性排名和多服务质量的云工作流调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1190-1196.
[2] 苏亮, 宋明亮, 董石麟, 罗尧治. 循环遗传聚类法稳定图自动分析[J]. 浙江大学学报(工学版), 2017, 51(3): 514-523.
[3] 王青, 余小光, 乔明杰, 赵安安, 程亮, 李江雄, 柯映林. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
[4] 程准,鲁植雄,龚佳慧,刁秀永 . 转向系统传递函数的研究及理想传动比获取[J]. 浙江大学学报(工学版), 2016, 50(7): 1276-1283.
[5] 王树朋,黄凯,严晓浪. 基于遗传算法的覆盖率驱动测试产生器[J]. 浙江大学学报(工学版), 2016, 50(3): 580-588.
[6] 刘扬,鲁乃唯,蒋友宝. 结构体系可靠度分析的改进支持向量回归[J]. 浙江大学学报(工学版), 2015, 49(9): 1692-1699.
[7] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2015, 49(1): 173-180.
[8] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2014, 48(8): 1-8.
[9] 程华强,罗尧治,许贤. 自适应张弦梁结构的非线性内力控制[J]. 浙江大学学报(工学版), 2014, 48(7): 1155-1161.
[10] 谢裕江,刘高. 小波边缘分析与建模的波阻抗反演算法的改进——以中国MOU气田盒8段储层分布预测为例[J]. J4, 2013, 47(9): 1680-1684.
[11] 刘业峰,徐冠群,潘全科,柴天佑. 磁性材料成型烧结生产调度优化方法及应用[J]. J4, 2013, 47(9): 1517-1523.
[12] 刘爱军, 杨育, 李斐, 邢青松, 陆惠, 张煜东. 混沌模拟退火粒子群优化算法研究及应用[J]. J4, 2013, 47(10): 1722-1730.
[13] 舒宇, 余锋, 汪乐宇. 基于预留带宽的光纤通道交换网硬实时通信[J]. J4, 2010, 44(9): 1698-1704.
[14] 陈晓刚, 于浩, 王波, 蒋正威, 江全元, 郭创新, 曹一家. 满足多种约束条件的最优PMU配置方法[J]. J4, 2010, 44(3): 539-543.
[15] 林兰芬, 欧冠男, 等. 多约束条件下自动配棉的混合遗传算法[J]. J4, 2009, 43(5): 801-806.