Please wait a minute...
J4  2013, Vol. 47 Issue (11): 2038-2045    DOI: 10.3785/j.issn.1008-973X.2013.11.023
电气工程、电信技术     
 基于多个压电换能器的接口电路
霍新新1,2,褚金奎1,2,韩冰峰1,2,姚斐1,2
1.大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连 116023;
2.辽宁省微纳米技术及系统重点实验室,辽宁 大连 116023  
Research on interface circuits of multiple piezoelectric generators
HUO Xin-xin1,2, CHU Jin-kui1,2,HAN Bing-feng1,2, YAO Fei1,2
1. Key Laboratory for Dalian University of Technology Precision & Non-traditional Machining of
Ministry of Education, Dalian University of Technology, Dalian 116023, China|2.Key Laboratory for Micro/Nano
Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023, China
 全文: PDF 
摘要:

为了探究多压电换能器并联时的能量输出特性,以标准电路和同步电感电路(SSHI)为基础提出4种多压电换能器并联电路,对4种电路下的输出功率进行理论推导,并探讨激振力之间相位差对并联输出功率的影响.结果表明:如果多压电换能器采用先并联后整流的标准/SSHI电路,激振力之间相位差对输出功率有影响,并且最终的并联输出功率由相位差、激振频率及接口电路共同决定.如果多压电换能器采用先整流后并联的标准/SSHI电路,激振力之间相位差对并联输出功率没有影响,输出功率由激振频率和接口电路决定.对比4种接口电路,采用先整流后并联的SSHI接口电,输出功率峰值较高、带宽较宽,在4种电路中综合效果更好.

关键词: 压电换能器标准电路SSHI电路并联相位差    
Abstract:

To explore the output power performance of multiple piezoelectric generators which are connected in parallel mode and work cooperatively, four kinds of parallel-connection interface circuits for multiple piezoelectric generators were proposed based on the standard circuit and the synchronized switch harvesting on inductor (SSHI) circuit. The output power in these four kinds of interface circuits was theoretically derived and the influence on it by the phase difference among the exciting forces was studied. The results show that for piezoelectric generators connected in parallel mode, if the piezoelectric generators are rectified after parallel connection and link with standard/ SSHI circuit, the phase difference between exciting forces has effect on the output power, and the output power is decided by the phase difference,the interface circuit and the excitation frequency. If piezoelectric generators are connected in parallel after rectifier bridges and link with standard/SSHI circuit, the phase difference has no effect on the output power and in this situation, the output power is decided by both the interface circuit and the excitation frequency. Compared among the four kinds of interface circuits, a system consists of multiple piezoelectric generators which are connected in parallel after rectifier bridges and link with SSHI circuit has higher output power and wider frequency bandwidth, so its comprehensive results are more acceptable.

Key words: piezoelectric generator    standard circuit    SSHI interface circuit    parallel    phase difference
出版日期: 2013-12-05
:     
基金资助:

国家自然科学基金资助项目(51175056);国家“973”重点基础研究计划资助项目(2011CB302105).

通讯作者: 褚金奎,男,教授、博导.     E-mail: chujk@dlut.edu.cn
作者简介: 霍新新(1988-)男,硕士生,从事新能源技术研究. E-mail:huoxinxin1122@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.

HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators. J4, 2013, 47(11): 2038-2045.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.11.023        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I11/2038

[1]POULIN G, SARRAUTE E, COSTA F. Generation of electrical energy for portable devices: comparative study of an electromagnetic and a piezoelectric system [J]. Sensors Actuators A:Physcial, 2004, 116(3): 46171.
[2] ROUNY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics [J]. Smart Materials and Structures , 2004, 13(5): 113-142.
[3] DUTOIT N E, WARDLE B L, KIM S G. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [J]. Integrated. Ferroelectrics, 2005, 71(1) : 12160.
[4] LEFEUVRE E, BADEL A, BENAYAD A, et al. A comparison between several approaches of piezoelectric energy harvesting [J]. Journal de Physique: An International Journal, 2005, 128(1): 17786.
[5] SHU Y C, LIEN I C. Analysis of power output for piezoelectric energy harvesting systems [J]. Smart Materials and Structures, 2006, 15(6): 1499512.
[6] GUYOMAR D, BADEL A, LEFEUVRE E. Toward energy harvesting using active materials and conversion improvement by nonlinear processing [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2005, 52(4): 58495.
[7] BADEL A, GUYOMAR D, LEFEUVRE E, et al. Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion[J]. Journal of Intelligent Material Systems and Structures,2005, 16(10): 889-901.
[8] BADEL A, GUYOMAR D, LEFEUVRE E,et al. Piezoelectric energy harvesting using a synchronized switch technique [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(8): 8319.
[9] MAKIHAR K, ONODA J, MIYAKAWA T. Low energy dissipation electric circuit for energy harvesting [J]. Smart Materials and Structures, 2006, 15(5): 14938.
[10] 阚君武,王淑云,彭少锋,等.多振子压电发电机的输出特性[J]. 光学精密工程,2011, 19(9): 210815.
KAN Jun-Wu, WANG Shu-Yun, PENG Shao-Feng, et al. Output performance of piezoelectric generators with multi-vibrators [J]. Optics and Precision Engineering, 2011, 19(9): 201815.
[11] LIEN I S, SHU Y C. Array of piezoelectric energy harvesters[C]∥SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. San Diego, California, USA:International Society for Optics and Photonics, 2011:79770k-79770K-9.
[12] HAGOOD N W, CHUNG W H, FLOTOW A V. Modelling of piezoelectric actuator dynamics for active structural control[J]. Journal of Intelligent Material Systems and Structures, 1990, 1(3): 32754.
[13] WANG Q M, CROSS L E, Constitutive equations of symmetrical triple layer piezoelectric benders\
[J\]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1999, 46(6): 1343-1351.

[1] 许文媛, 孟濬, 赵夕朦. 基于高速摄像机的动态血压非接触获取[J]. 浙江大学学报(工学版), 2017, 51(10): 2077-2083.
[2] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[3] 刘统, 龚国芳, 石卓, 彭左, 吴伟强. TBM刀盘驱动系统单神经元模糊同步控制[J]. 浙江大学学报(工学版), 2016, 50(11): 2207-2214.
[4] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[5] 谢鹏康, 陈恒林, 陈国柱. 并联磁阀三相六柱式磁阀式可控电抗器磁损特性[J]. 浙江大学学报(工学版), 2015, 49(12): 2418-2424.
[6] 钟晓剑, 冯霞,徐群伟,陈国柱. 基于ABC坐标系的三相四线并联型APF控制策略[J]. 浙江大学学报(工学版), 2014, 48(5): 889-895.
[7] 王剑,胡锡幸,郭吉丰. 二自由度超声波电机位姿检测与控制[J]. 浙江大学学报(工学版), 2014, 48(5): 871-876.
[8] 屈稳太, 杨家强, 张明晖. 大部件姿态的快速计算与高精度多轴同步控制[J]. 浙江大学学报(工学版), 2014, 48(12): 2216-2222.
[9] 陈伟海, 陈泉柱, 刘荣, 张建斌, 崔翔. 绳驱动拟人臂机器人回零算法分析[J]. J4, 2013, 47(2): 345-352.
[10] 朱明磊,赵荣祥. 基于快速分布式主从控制的PCS系统[J]. J4, 2013, 47(11): 2031-2037.
[11] 魏春雨, 周晓军, 魏燕定, 唐昉. 基于Vortex的6自由度平台洗出运动仿真[J]. J4, 2012, 46(8): 1390-1396.
[12] 艾青林, 祖顺江, 胥芳. 并联机构运动学与奇异性研究进展[J]. J4, 2012, 46(8): 1345-1359.
[13] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[14] 艾青林,黄伟锋,祖顺江. 基于螺旋理论的钢带并联机器人力学特性数值分析[J]. J4, 2011, 45(9): 1650-1656.
[15] 童根树, 赵钦. 变刚度多重抗侧力结构的串并联模型[J]. J4, 2011, 45(8): 1435-1440.