Please wait a minute...
J4  2013, Vol. 47 Issue (11): 1976-1982    DOI: 10.3785/j.issn.1008-973X.2013.11.014
能源工程     
乘用车发动机电控冷却系统控制策略
刘震涛,尹旭,韩松,孙正,俞小莉
浙江大学 动力机械及车辆工程研究所,浙江 杭州 310027
Control strategy of electrically controlled passenger vehicle engine cooling system
LIU Zhen-tao, YIN Xu, HAN Song, SUN Zheng, YU Xiao-li
Power Machinery & Vehicular Engineering Institute, Zhejiang university, Hangzhou 310027, China
 全文: PDF 
摘要:

针对乘用车发动机冷却系统水温控制问题.建立某车型冷却系统仿真模型,通过台架试验验证模型,在模型的基础上设计PI反馈控制和前馈-反馈综合控制的控制策略,将3种冷却系统控制方式在暖机、负荷突变情况下进行对比,并在新欧洲行驶循环 (NEDC)下考虑冷却系统功耗进行综合分析.结果表明:PI反馈控制策略可将发动机冷却液出口水温波动控制在±1.5 ℃,而综合控制则将温度波动控制在±0.5 ℃,PI反馈控制和综合控制较原机减小暖机时间, 相对原机系统在NEDC循环下分别降低功耗55.3%、58.0%.采用前馈-反馈的综合控制方式较PI反馈控制策略冷却液温度波动更小且冷却系统附件功耗能够进一步降低.

关键词: PI反馈前馈-反馈温度模型    
Abstract:

Temperature control problem was studied on a passenger car engine cooling system. and a certain car cooling system model was  established. The model was also verified by the bench test. Based on the cooling system model, PI feedback control strategy and feedforward-feedback control strategy were designed. The  three different cooling system control modes were compared under warm-up & mutation load operations.The comprehensive analysis was also done for the cooling system parasitic cost under (new european driving cycle NEDC). Results show that, coolant temperature fluctuation could be controlled within ±1.5 ℃ by means of PI feedback control and ±05 ℃ by means of integrated control. Compared to the original cooling system, the warm up time of the PI feedback control system and the integrated control system are reduced, and the parasitic costs are reduced by 55.3% and 58.0% respectively. The feedforward-feedback control system has lower coolant temperature fluctuation and the parasitic cost is also further reduced. 

Key words: PI feedback    feedforward- feedback    temperature    model
出版日期: 2013-12-05
:  TK 414.2  
通讯作者: 韩松,男,助理研究员.     E-mail: hanss@zju.edu.cn
作者简介: 刘震涛(1971-),男,副教授,从事车辆热管理、发动机零部件疲劳可靠性技术研究. E-mail: liuzt@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘震涛,尹旭,韩松,孙正,俞小莉. 乘用车发动机电控冷却系统控制策略[J]. J4, 2013, 47(11): 1976-1982.

LIU Zhen-tao, YIN Xu, HAN Song, SUN Zheng, YU Xiao-li. Control strategy of electrically controlled passenger vehicle engine cooling system. J4, 2013, 47(11): 1976-1982.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.11.014        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I11/1976

[1] 成晓北,潘立,鞠洪玲.现代车用发动机冷却系统进展[J].车用发动机,2008,173(1):1-7.
CHENG Xiao-bei, PAN Li, JV Hong-ling. Research progress of cooling system for modern vehicle engine[J]. Vehicle Engine, 2008,173(1):1-7.
[2] PANG H H, BRACE C J. Review of engine cooling technologies for modern engines\
[J\].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004,218(11):1209-1215.
[3] REITBAUER R, HAGER J, MARZY R. Optimization of heat management of vehicles using simulation tools [C] ∥ 2000 FISITA World Automotive Congress. Seoul:Society of Automotive Engineers of korea, 2000,F2000H246.
[4] MATTHIEU C, BERTRAND G, ALAIN F, et al. The need for an electrical water valve in a THErmal management intelligent system (THEMISTM) [C] ∥2003 SAE World Congress. Detroit: SAE Paper, 2003: 2003-01-0274.
[5] AP N S, JOUANNY P, POTIER M, et al. Ultimatecooling system for new generation of vehicle [C] ∥ Vehicle Thermal Management Systems Conference and Exhibition. Toronto: SAE Paper, 2005: 2005-01-2005.
[6] CHALGREN R D, ALLEN D J. Light duty diesel advanced thermal management[C]∥ Vehicle Thermal Management Systems Conference and Exhibition. Toronto: SAE Paper, 2005: 2005-01-2020.
[7] ALLEN D J, LASECKI M P. Thermal management evolution and controlled coolant flow [C] ∥ Vehicle Thermal Management Systems Conference and Exhibition. Nashville: SAE Paper, 2001: 2001-01-1732.
[8] BEHR. Engine Cooling-comprehensive knowledge for garages [M]. Germany: Behr Hella Service GmbH, 2008:35-36.
[9] SALAH M H, MITCHELL T H, WAGNER J R. Nonlinear-control strategy for advanced vehicle thermal-management systems [J]. IEEE Transactions on Vehicular Technology, 2007,57(1):127-137.
[10] AI TAMIMI A, SALAH M H, Al-Jarrah A. neural network-based optimal control for advanced vehicular thermal management systems[C] ∥SAE 2011 Commercial Vehicle Engineering Congress. Rosemont:SAE Paper, 2011: 2011-01-2184.
[11] 姚仲鹏,王新国.车辆冷却传热[M]. 北京:机械工业出版社,2001:99-100.
[12] AP N S, GUERRERO P, JOUANNY P. Influence of fan system electric power on the heat performance of engine cooling module[C]∥2003 SAE World Congress. Detroit:SAE Paper, 2003:2003-01-0275.1313

[1] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460.
[2] 张林, 程华, 房一泉. 基于卷积神经网络的链接表示及预测方法[J]. 浙江大学学报(工学版), 2018, 52(3): 552-559.
[3] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503.
[4] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[5] 贾文超, 胡荣贵, 施凡, 许成喜. 多特征关联的注入型威胁检测方法[J]. 浙江大学学报(工学版), 2018, 52(3): 524-530.
[6] 于勇, 范胜廷, 曹鹏, 周阳, 赵罡. 基于STEP AP242的MBD模型表达研究与实现[J]. 浙江大学学报(工学版), 2018, 52(3): 584-590.
[7] 曹宁博, 陈永恒, 曲昭伟, 赵利英, 白乔文, 杨秋杰. 基于社会力模型的行人路径选择模型[J]. 浙江大学学报(工学版), 2018, 52(2): 352-357.
[8] 曲昭伟, 罗瑞琪, 陈永恒, 曹宁博, 邓晓磊, 汪昆维. 信号交叉口右转机动车轨迹特性[J]. 浙江大学学报(工学版), 2018, 52(2): 341-351.
[9] 杨庆芳, 赵小辉, 郑黎黎, 张伟. 基于模型预测控制的环形交叉口信号配时方法[J]. 浙江大学学报(工学版), 2018, 52(1): 117-124.
[10] 施俊鹏, 龚景海, 李中立. 基于建筑信息模型的车辐式结构张拉仿真技术[J]. 浙江大学学报(工学版), 2018, 52(1): 89-96.
[11] 刘友, 沈清, 马东立, 袁湘江. 水下滑翔机的机翼位置与螺旋运动关系分析[J]. 浙江大学学报(工学版), 2017, 51(9): 1760-1769.
[12] 郭超, 侯增选, 杨广卿, 郑栓柱. 采用力反馈技术的毛笔建模[J]. 浙江大学学报(工学版), 2017, 51(9): 1735-1744.
[13] 杜锦华, 薛运田, 刘全威. 永磁起动/发电机系统的参数匹配标定与实现[J]. 浙江大学学报(工学版), 2017, 51(9): 1851-1860.
[14] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[15] 胡亚元, 余启致, 张超杰, 钱镜林, 谢嘉祺. 纤维加筋淤泥固化土的邓肯-张模型[J]. 浙江大学学报(工学版), 2017, 51(8): 1500-1508.