Please wait a minute...
J4  2013, Vol. 47 Issue (11): 1932-1938    DOI: 10.3785/j.issn.1008-973X.2013.11.007
土木工程     
列车加减速引起轨道结构和饱和地基振动
史吏1, 蔡袁强1,2, 潘晓东3
1.浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310027;2.温州大学 建筑工程学院,浙江 温州 325035;
3.浙江工业大学 建筑工程学院,浙江 杭州 310014
Study on  vibrations of rail structure and saturated soil induced by train acceleration and deceleration
SHI Li1, CAI Yuan-qiang1,2, PAN Xiao-dong3
1.Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University,
Hangzhou 310027, China; 2.College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035,China;
3. College of Architecture and Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF 
摘要:

为了研究列车加减速引起的饱和地基振动问题,基于两相介质Biot动力控制方程的简化u-p格式,开发二维饱和土体单元. 通过引入饱和土体黏弹性人工边界,求解移动点荷载作用下的二维饱和地基动力响应,并与半解析解进行对比验证,说明饱和土体单元的正确性和黏弹性人工边界的适用性. 结合E-B梁单元、弹簧-黏壶单元和集中质量单元对轨枕、道砟离散支承的轨道结构及饱和地基进行二维有限单元离散. 将列车荷载简化为平面内的移动轴荷载,通过与列车匀速时对比研究列车加速和减速时饱和地基的孔压、位移响应及离散轨枕、道砟的加速度响应. 结果表明列车减速将增大轨枕、道砟的水平及竖向加速度峰值;列车加速和减速在饱和地基中引起方向相反的土体水平向位移,且减速时土体水平位移峰值更大;列车加速和减速均增大土体竖向位移峰值.

关键词: u-p格式饱和地基列车加减速动力响应    
Abstract:

Based on the simplified u-p formulation of Biot's theory, a 2D saturated-soil element was developed and used to discretize a saturated ground under plain-strain condition. At boundaries of the saturated ground model, artificial boundary conditions were applied to simulate the infinity of the ground. The rail, rail-pads, sleepers and ballasts of a 2D track were modeled by E-B beam elements, spring-damper elements and lumped mass elements, respectively. The train loads were simplified into a series of moving axle loads in plain. By comparing to the case of a train under uniform motion, the effects of train acceleration and deceleration were investigated with respect to the track accelerations, the displacements and excess pore water pressures of the saturated ground. It is found that peak values of the horizontal and vertical accelerations of the sleeper and ballast are increased by train deceleration; train acceleration and deceleration cause horizontal ground displacements in opposite directions; the peak value of horizontal ground displacements caused by train deceleration is larger than that induced by train acceleration; both of train acceleration and deceleration slightly increase peak values of the vertical ground displacements.

Key words: u-p formulation    saturated ground    train acceleration and deceleration    dynamic responses
出版日期: 2013-12-05
基金资助:

国家杰出青年科学基金资助项目(51025827);国家自然科学基金资助项目(50908212).

通讯作者: 蔡袁强, 男, 教授, 博导.     E-mail: caiyq@zju.edu.cn
作者简介: 史吏(1987-), 男, 博士生, 从事土动力学数值计算研究. E-mail:418194187@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

史吏, 蔡袁强, 潘晓东. 列车加减速引起轨道结构和饱和地基振动[J]. J4, 2013, 47(11): 1932-1938.

SHI Li, CAI Yuan-qiang, PAN Xiao-dong. Study on  vibrations of rail structure and saturated soil induced by train acceleration and deceleration. J4, 2013, 47(11): 1932-1938.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.11.007        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I11/1932

[1] DE HOOP A T. The moving-load problem in soil dynamics-the vertical displacement approximation [J]. Wave Motion, 2002, 36(4): 335-346.
[2] ANDERS KARLSTROM. An analytical model for ground vibrations from accelerating trains [J]. Journal of Sound and Vibration, 2006, 293: 587-598.
[3]曹志刚, 蔡袁强, 徐长节. 移动列车荷载作用下路面的动力响应[J]. 浙江大学学报:工学版, 2009, 43: 777-781.
CAO Zhi-gang, CAI Yuan-qiang, XU Chang-jie. Dynamic response of pavement subjected to moving traffic load [J]. Journal of Zhejiang University :Engineering Science, 2009, 43: 777-781.
[4] BIOT M A. Theory of propagation of elastic waves in a fluid saturated porous solid. I: Low frequency range; II: Higher frequency range [J]. Journal of Acoustic Society of American, 1956, 28(2):168-191.
[5] 蔡袁强, 孙宏磊, 徐长节. 轨道刚度对路轨系统及饱和地基的动力响应的影响[J]. 岩土工程学报, 2007, 12: 1787-1793.
CAI Yuan-qiang, SUN Hong-lei, XU Chang-jie. Effect of rail rigidity on track-ground vibration due to a high-speed train [J]. Chinese Journal of Rock Mechanics and Engineering, 2007,12: 17871793.
[6] ZIENKIEWICZ O C. The finite element method [M]. New York: McGraw-Hill, 1977: 102-104.
[7] ZIENKIEWICZ O C, CHANG C T, BETTESS P. Drained, undrained, consolidating and dynamic behavior assumptions in soils [J]. Geotechnique, 1980, 30(4): 385-395.
[8] DEGRANDE G, ROECK G De. An absorbing boundary condition for wave propagation in saturated poroelastic media. Part I: Formulation and efficiency evaluation [J]. Soil Dynamics and Earthquake Engineering, 1993, 12: 411-421.

[1] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[2] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[3] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[4] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[5] 王奎华,吴文兵,马少俊,马伯宁. 嵌岩桩沉渣特性对桩顶动力响应的影响[J]. J4, 2012, 46(3): 402-408.
[6] 蔡袁强,陈成振,孙宏磊. 黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J]. J4, 2011, 45(9): 1657-1663.
[7] 王振宇,梁旭,刘国华,程围峰. 水下爆破荷载作用下简支Kirchhoff板的积分变换解[J]. J4, 2011, 45(11): 1972-1979.
[8] 杨冬英, 王奎华. 非均质土中基于虚土桩法的桩基纵向振动[J]. J4, 2010, 44(10): 2021-2028.
[9] 高广运, 何俊锋, 李佳. 地铁运行引起的饱和地基动力响应[J]. J4, 2010, 44(10): 1925-1930.
[10] 项贻强, 孙筠. 深层混凝土搭板处治路桥过渡段的动力响应[J]. J4, 2010, 44(10): 1863-1869.
[11] 蒋吉清, 鲍亦兴, 陈伟球. 结构动力分析中回传射线矩阵法的扩展与应用[J]. J4, 2009, 43(6): 1065-1070.
[12] 曹志刚 蔡袁强 徐长节. 移动车辆荷载作用下路面的动力响应[J]. , 2009, 43(4): 777-781.
[13] 胡秀青 蔡袁强 徐长节. 埋置于饱和地基中刚性基础的竖向振动[J]. , 2009, 43(4): 750-754.
[14] 王奎华, 杨冬英, 张智卿. 两种径向多圈层土体平面应变模型的对比[J]. J4, 2009, 43(10): 1902-1908.
[15] 陈刚 蔡袁强 徐长节. 横观各向同性饱和土中埋置弹性桩的扭转振动[J]. J4, 2008, 42(1): 13-18.