Please wait a minute...
J4  2013, Vol. 47 Issue (10): 1784-1789    DOI: 10.3785/j.issn.1008-973X.2013.10.013
土木工程     
全被动式海流能量采集系统水动力学机理
邓见, 戴滨, 邵雪明, 郑耀
浙江大学 航空航天学院,浙江 杭州 310027
Hydrodynamic mechanism of fully passive energy harvester
from ocean current
DENG Jian, DAI Bin, SHAO Xue-ming, ZHENG Yao
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

采用计算流体力学方法研究基于振荡水翼的海流能量采集系统.该系统包含俯仰与升沉两自由度运动,升沉方向包含阻尼器,俯仰方向包含扭转弹簧,基于流致振荡的原理在均匀来流中形成周期性的能量采集状态.提出该能量采集系统的目的是为了缓解传统采集方式对海洋环境的破坏.在传统的基于旋转叶片的水轮机海流能量采集器中,高速旋转的叶片在叶尖形成高速流动,由此产生的噪音及高速流影响了海洋鱼类的迁徙.对转轴位置与弹簧刚度这2个参数进行研究.结果表明,在(b,kα)相空间中存在4种基本工作状态:1)水翼随着时间演化回到初始状态|2)周期性的俯仰与升沉运动|3)在0°角附近小幅度俯仰振荡而升沉方向沿某一方向漂移|4)由于不规则振荡及升沉方向的大位移,计算发散.其他结论包括:1)最大能量采集效率接近20%|2)与前人研究相比,能够在更大的参数范围内采集到稳定能量.

关键词: 海流能量采集流致振荡计算流体力学    
Abstract:

A novel ocean flow energy harvesting device was examined by using the computational fluid dynamic method. The device consists of an oscillating foil mounted on a damper (representing a power generator) and a rotational spring. The basic principle of the fully passive energy harvester relies upon fluid-induced vibrations. The energy harvesting concept was proposed recently to minimize its environmental problems compared to traditional turbine-based devices containing rotating blades, in which large translational speed is reached at the tips of the blades causing serious environmental concerns about noise generation as well as the threat they pose to block passages of migratory fishes. The inertial effect was considered in the dynamic model which is involved in our simulations. Results show that four different responses are recorded in the (b, kα) phase plane. The responses include: 1) the foil returns to its initial position; 2) periodic pitching and heaving motions are excited; 3) pitching in a small range of angles and heavily shifting to one direction; 4) the simulations diverge due to irregular motions and large heaving displacements. Other conclusions include: 1) the maximum harvesting efficiency is reached around 20%; 2) a larger parametrical scope was found for steady energy harvester on the phase plane compared to previous research.

Key words: ocean flow energy harvester    flow-induced oscillation    computational fluid dynamics
出版日期: 2013-11-05
:  TV 131.2  
基金资助:

国家自然科学基金资助项目(11272283);浙江省自然科学基金资助项目(LY12A02006);浙江大学海洋学科交叉研究引导基金资助项目(2012HY023B).

作者简介: 邓见(1981—),男,副教授,从事计算流体力学、水动力学的研究. E-mail: zjudengjian@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邓见, 戴滨, 邵雪明, 郑耀. 全被动式海流能量采集系统水动力学机理[J]. J4, 2013, 47(10): 1784-1789.

DENG Jian, DAI Bin, SHAO Xue-ming, ZHENG Yao. Hydrodynamic mechanism of fully passive energy harvester
from ocean current. J4, 2013, 47(10): 1784-1789.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.10.013        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I10/1784

[1] WU T Y. Extraction of flow energy by a wing oscillating in waves [J]. Journal of Ship Research, 1972, 14(1): 66-78.

[2] WU T Y, CHWANG A T. Extraction of flow energy by fish and birds in a wavy stream [C]∥Proceedings of the Symposium on Swimming and Flying in Nature. New York: Plenum Press, 1975.

[3] MCKINNEY W, DELAURIER J. The wingmill: an oscillating-wing windmill [J]. Journal of Energy, 1981, 5(2): 109-115.

[4] JONES K D, PLATZER M F. Numerical computation of flapping-wing propulsion and power extraction [C] ∥35th Aerospace Sciences Meeting and Exhibit. Reno, NV: AIAA Paper, 1997.

[5] SIMPSON B J, LICHT S, HOVER F S, et al. Energy extraction through flapping foils [C] ∥27th International Conference on Offshore Mechanics and Arctic Engineering. Berlin: [s.n.], 2008: 389-395.

[6] DUMAS G, KINSEY T. Eulerian simulations of oscillating airfoils in power extraction regime [C] ∥Advances in Fluid Mechanics VI. Southampton, UK: WIT, 2006: 245-254.

[7] 杨洋,童根树,张磊.压杆轴力与轴向位移全过程曲线的近似表达式[J].工程力学,2012,29(9): 17-24.

YANG Yang, TONG Gen-shu, ZHANG Lei. Solution of load-displacement curve for members in compression [J]. Engineering Mechanics, 2012,29(9): 17-24.

[8] BRANDONISIO G, TORENO M, MELE E, et al. Seismic design of concentric braced frames [J]. Journal of Constructional Steel Research, 2012, 78(1): 22-37.

[9] MARINO E M, NAKASHIMA M. Seismic performance and new design procedure for chevron-braced frames [J]. Earthquake Engineering and Structural Dynamics, 2006, 35(4): 433-452.

[10] GB50011-2010,建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

[11] DOMINGUEZ E A, COLUNGA A. Nonlinear behavior of code-designed reinforced concrete concentric braced frames under lateral loading [J]. Engineering Structures, 2010, 32(4): 944-963.

[12] MFDC-04, Reglamento de construcciones para el distrito federal [S]. México City: Gaceta Oficial del Departamento del Distrito Federal, 2004.

[13] OKAZAKI T, LIGNOS D G, HIKINO T, et al. Dynamic response of a steel concentrically braced frame [C]∥ Proceedings of ASCE Structures Congress. Las Vegas: ASCE, 2011: 950-959.

[14] KIM J, LEE Y, CHOI H. Progressive collapse resisting capacity of braced frames [J]. The Structural Design of Tall and Special Buildings, 2011, 20(2): 257-270.

[15] GB50017-2003,钢结构设计规范[S]. 北京: 中国计划出版社, 2003.

[16] UBC1997, The uniform building code [S]. Whittier: International Conference of Building Officials, 1997.

[17] BECKER R. Seismic design of special concentrically braced steel frames [M]. Moraga: Structural Steel Educational Council, 1995.

[18] 童根树. 钢结构的平面内稳定[M]. 北京:中国建筑工业出版社,2005.

[1] 董永申, 王定标, 向飒, 夏春杰. 倾斜螺旋片强化的套管换热器数值模拟[J]. 浙江大学学报(工学版), 2015, 49(2): 309-314.
[2] 何方祥, 詹树林, 钱晓倩, 赖俊英. 平屋顶遮阳通风层隔热的数值模拟分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2397-2402.
[3] 任立波, 韩吉田, 赵红霞. 单沉浸管流化床内离散颗粒数值模拟[J]. 浙江大学学报(工学版), 2015, 49(1): 150-156.
[4] 董永申, 王定标, 向飒, 夏春杰. 倾斜螺旋片强化的套管换热器数值模拟[J]. 浙江大学学报(工学版), 2014, 48(9): 1-6.
[5] 张焕宇,郝志勇,郑旭. 柴油机冷却系统散热性能优化设计[J]. J4, 2014, 48(1): 70-75.
[6] 刘星,邓见,郑耀,潘国峰. 高速列车受电弓空气动力学对弓网受流的影响[J]. J4, 2013, 47(3): 558-564.
[7] 孙婧元, 楼佳明, 黄正梁, 王靖岱, 蒋斌波, 阳永荣. 液体雾化效果的检测及流体力学模拟[J]. J4, 2012, 46(2): 218-225.
[8] 李强, 刘淑莲, 于桂昌, 潘晓弘, 郑水英. 非线性转子-轴承耦合系统润滑及稳定性分析[J]. J4, 2012, 46(10): 1729-1736.
[9] 周胤,俞亚南,段园煜. 金属压型板屋顶通风层隔热的数值模拟[J]. J4, 2011, 45(1): 112-117.
[10] 赵永志, 江茂强, 徐平, 郑津洋. 埋管流化床内传热行为的微观尺度模拟研究[J]. J4, 2010, 44(6): 1178-1184.
[11] 李良超, 王嘉骏, 顾雪萍, 冯连芳, 李伯耿. 气液搅拌槽内气泡尺寸与局部气含率的CFD模拟[J]. J4, 2010, 44(12): 2396-2400.
[12] 江茂强,赵永志,郑津洋. 非等密度颗粒气固流化床的微观尺度模拟与分析[J]. J4, 2009, 43(09): 1703-1708.
[13] 黄钰期 俞小莉 陆国栋. 锯齿型翅片单元的流动与传热数值模拟[J]. J4, 2008, 42(8): 1462-1468.
[14] 林勇刚 李伟 刘宏伟 马舜. 水下风车海流能发电技术[J]. J4, 2008, 42(7): 1242-1246.
[15] 霍旺 高翔 王惠挺 骆仲泱 施平平 岑可法. 搅拌容器内氧气非均相传质过程的数值模拟[J]. J4, 2008, 42(12): 2216-2221.