Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1631-1636    DOI: 10.3785/j.issn.1008-973X.2013.09.018
能源工程     
热水解处理制革污泥过程中总Cr的转移与稳定性研究
符成龙,麻红磊,池涌,严建华,倪明江
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Study on migration and stability of total Cr
 in tannery sludge by thermal hydrolysis treatment
FU Cheng-long, MA Hong-lei, CHI Yong, YAN Jian-hua, NI Ming-jiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

采用热水解法研究了不同热水解温度和酸性条件下,制革污泥中重金属总铬的转移特性及浸出毒性变化.结果表明:pH对制革污泥中Cr的溶出起主要作用,H2SO4调节pH为2.5和1.5时,常温水解预处理对污泥中Cr的转移率分别达到了56%和91%.热水解温度的提高不利于Cr向液相转移,当pH=2.5时,180 ℃热水解后的水解液中Cr的质量分数比常温条件下降低了70%以上.热水解处理促进污泥中Cr的稳定,且随着热水解温度的升高,Cr的浸出毒性显著降低, 180 ℃热水解Cr的稳定化率达93.2%,而常温下只有50.8%,因此,可采用常温H2SO4浸取+热水解联合处理的方法,实验结果表明:Cr的转移和稳定化效果均较好,污泥中Cr向液相的转移率高于90%,固相中Cr的浸出毒性显著降低,稳定化率超过95%.

关键词: 制革污泥硫酸热水解重金属    
Abstract:

The migration characteristics and leaching toxicity of  total Cr in tannery sludge were studied at different thermal hydrolysis temperatures and acid conditions. The results show that pH plays a leading role in migration of Cr from solid phase to liquid phase. At pH=2.5 and 1.5 adjusted by H2SO4, the migration rate of Cr can reach 56% and 91% at room temperature. The rise of thermal hydrolysis temperature will worsen the migration of Cr to hydrolysate.  At pH of 2.5, the concentration of Cr in hydrolysate is reduced over 70% at 180 °C compared to room temperature. Thermal hydrolysis promotes the stability of Cr, and the leaching toxicity of Cr is significantly reduced as temperature rises. At 180 °C, the stabilization rate of Cr increases to 93.2%, while at room temperature it is only 50.8%. By H2SO4 extraction at room temperature and subsequently thermal hydrolysis, this combined method obtains good results of the migration and stability of Cr: more than 90% of Cr is dissolved into liquid phase, the leaching toxicity of Cr is lowered evidently and the stabilization rate is more than 95%.

Key words: tannery sludge    sulphuric acid    thermal hydrolysis    heavy metal    Cr
出版日期: 2013-09-17
:  X 705  
基金资助:

水体污染控制与治理科技重大专项资助项目(2009ZX07317-003)|国家”973”重点基础研究发展规划资助项目(2011CB201506).

通讯作者: 池涌,男,教授.     E-mail: chiyong@ zju.edu.cn
作者简介: 符成龙(1988-),男,硕士生,从事废弃物资源化利用研究.E-mail: likefu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

符成龙,麻红磊,池涌,严建华,倪明江. 热水解处理制革污泥过程中总Cr的转移与稳定性研究[J]. J4, 2013, 47(9): 1631-1636.

FU Cheng-long, MA Hong-lei, CHI Yong, YAN Jian-hua, NI Ming-jiang. Study on migration and stability of total Cr
 in tannery sludge by thermal hydrolysis treatment. J4, 2013, 47(9): 1631-1636.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.09.018        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I9/1631

[1] ZHOU Shun-gui, ZHOU Li-xiang, WANG Shi-mei, et al. Removal of Cr from tannery sludge by bioleaching method[J]. Journal of Environmental Sciences, 2006, 18(5): 885-890.
[2] 丁绍兰, 章川波, 俞从正. 制革污泥处理及综合利用的途径[J]. 中国皮革, 1998, 27(008): 18-20.
DING Shao-lan, ZHANG Chuan-bo, YU Cong-zheng. Tannery sludge disposal and comprehensive utilization[J]. China Leather, 1998, 27(008): 18-20.
[3] CHUAN M C, LIU J C. Release behavior of chromium from tannery sludge[J]. Water Research, 1996, 30(4): 932-938.
[4] APTE A D, VERMA S, TARE V, et al. Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment[J]. Journal of Hazardous Materials, 2005, 121(1–3): 215-222.
[5] WALSH A R, OHALLORAN J. Chromium speciation in tannery effluent—I. An assessment of techniques and the role of organic Cr(III) complexes[J]. Water Research, 1996, 30(10): 2393-2400.
[6] WALSH A R, OHALLORAN J. Chromium speciation in tannery effluent—II. Speciation in the effluent and in a receiving estuary[J]. Water Research, 1996, 30(10): 2401-2412.
[7] SHEN S B, TYAGI R D, BLAIS J F. Extraction of Cr(III) and other metals from tannery sludge by mineral acids[J]. Environmental Technology, 2001, 22(9): 1007-1014.
[8] NEYENS E, BAEYENS J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1/3): 51-67.
[9] JIANG Zi-li, MENG Da-wei, MU Hong-yan, et al. Study on the hydrothermal drying technology of sewage sludge[J]. Science China Technological Sciences, 2010, 53(1): 160-163.
[10] NAMIOKA T, MOROHASHI Y, YAMANE R, et al. Hydrothermal treatment of dewatered sewage sludge cake for solid fuel production[J]. Journal of Environment and Engineering, 2009, 4(1): 68-77.
[11] 荀锐, 王伟, 乔玮. 水热改性污泥的水分布特征与脱水性能研究[J]. 环境科学, 2009, 30(003): 851-856.
XUN Rui, WANG Wei, QIAO Wei. Water distribution and dewatering performance of the hydrothermal conditioned sludge[J]. Environmental Science, 2009, 30(003): 851-856.
[12] MA Hong-lei, CHI Yong, YAN Jian-hua, et al. Experimental study on thermal hydrolysis and dewatering characteristics of mechanically dewatered sewage sludge[J]. Drying Technology, 2011, 29(14): 1741-1747.
[13] NEYENS E, BAEYENS J, WEEMAES M, et al. Hot acid hydrolysis as a potential treatment of thickened sewage sludge[J]. Journal of Hazardous Materials, 2003, 98(1/3): 275-293.
[14] 孙雪萍, 王安亭, 李新豪, 等. 热水解法处理污泥过程中重金属的迁移规律[J]. 中国给水排水, 2010, 26(17): 66-72.
SUN Xue-ping, WANG An-ting, LI Xin-hao, et al. Migration of heavy metals in sludge treatment by thermal hydrolysis process[J]. China Water & Wastewater, 2010, 26(17): 66-72.
[15] DEWIL R, BAEYENS J, APPELS L. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content[J]. Journal of Hazardous Materials,2007, 144(3): 703-707.
[16] BLAIS J, TYAGI R, AUCLAIR J, et al. Comparison of acid and microbial leaching for metal removal from municipal sludge[J]. Water Science & Technology, 1992, 26(1/2): 197-206.
[17] BABEL S, DEL MUNDO DACERA D. Heavy metal removal from contaminated sludge for land application: A review[J]. Waste Management, 2006, 26(9): 988-1004.
[18] 王治军, 王伟. 污泥热水解过程中固体有机物的变化规律[J]. 中国给水排水, 2004, 20(7): 1-5.
WANG Zhi-iun, WANG Wei. Transformation regularity of organic solids in sludge thermal hydrolysis process[J]. China Water & Wastewater, 2004, 20(7): 1-5.
[19] SMITH R, ATMAJI P, HAKUTA Y, et al. Recovery of metals from simulated high-level liquid waste with hydrothermal crystallization[J]. The Journal of Supercritical Fluids, 1997, 11(1/2): 103-114.
[20] 刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究[J]. 环境科学研究, 2008,21(6): 9-15.
LIU Feng, WANG Qi, HUANG Qi-fe, et al. Study on the standard methods of leaching toxicity of solid waste [J]. Research of Environmental Science, 2008,21(6): 9-15.
[21] STYLIANOU M, KOLLIA D, HARALAMBOUS K, et al. Effect of acid treatment on the removal of heavy metals from sewage sludge[J]. Desalination, 2007, 215(1/3): 73-81.
[22] 王磊, 金剑, 李晓东, 等. 碱性水热法同步稳定城市垃圾/医疗废物焚烧飞灰与废水中重金属的研究[J]. 环境科学, 2010, 31(8): 1973-1980.
WANG Lei, JIN Jian, LI Xiao-dong, et al. Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical incinerator fly ash and waste water[J]. Environmental Science, 2010, 31(8): 1973-1980.

[1] 温小栋, 蔡煜梁, 赵莉, 冯蕾. 凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性[J]. 浙江大学学报(工学版), 2017, 51(3): 532-537.
[2] 吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 2016, 50(8): 1479-1485.
[3] 赵会欣, 万浩, 蔡巍, 哈达, 王平. 用于水污染重金属检测的微电极阵列传感器芯片[J]. J4, 2013, 47(6): 984-989.
[4] 王海龙,董宜森,孙晓燕, 金伟良. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. J4, 2012, 46(7): 1255-1261.
[5] 董宜森,王海龙,金伟良. 硫酸盐侵蚀环境下混凝土双K断裂参数试验研究[J]. J4, 2012, 46(1): 58-63.
[6] 王勤, 严建华, 潘新潮, 池涌, 高飞. 利用热等离子体熔融垃圾焚烧飞灰[J]. J4, 2011, 45(1): 141-145.
[7] 胡卫军 蔡华 李毅 李蓉 王平 杨国光. 基于微透镜阵列的重金属离子阵列传感器研究[J]. J4, 2008, 42(3): 517-521.
[8] 严建华 祝红梅 蒋旭光 池涌 岑可法. 医疗废物焚烧中Cd/Cu/Pb/Zn的分布研究[J]. J4, 2008, 42(10): 1812-1816.
[9] 王银瓶 潘跃峰 李毅 邹绍芳 胡卫军 王平. 海水痕量重金属元素现场自动识别技术[J]. J4, 2007, 41(2): 230-235.
[10] 孙春燕 石学根 魏幼璋 杨肖娥 荆延德. 汞污染对植物品质指标的影响[J]. J4, 2007, 41(12): 2087-2092.
[11] 肖海平 周俊虎 刘建忠 范红宇 程军 岑可法. CaS氧化反应特性的热重研究[J]. J4, 2006, 40(6): 982-985.
[12] 邹绍芳 门洪 李毅 王银瓶 叶学松 王平. 海水重金属自动检测系统研究[J]. J4, 2005, 39(11): 1708-1712.
[13] 李建新 严建华 金余其 倪明江 岑可法. 生活垃圾焚烧飞灰重金属特性分析[J]. J4, 2004, 38(4): 490-494.