Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1611-1619    DOI: 10.3785/j.issn.1008-973X.2013.09.015
机械工程     
气动力伺服系统的自适应鲁棒控制
孟德远,陶国良,钱鹏飞,班伟
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Adaptive robust control of pneumatic force servo system
MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027,China
 全文: PDF 
摘要:

为实现具有输出力轨迹控制能力的气动力伺服系统,研究了气体通过比例方向控制阀阀口的流动以及气缸腔内气体的热力过程,建立系统的非线性模型.针对忽略温度动态而导致的较大的建模误差,构造了状态观测器来估计腔内气体温度,在此基础上设计了基于全阶热力学模型的气动力伺服系统的自适应鲁棒控制器.该控制器通过在线参数估计来减小模型中参数的不确定性,利用非线性鲁棒控制来抑制参数估计误差、未建模动态和干扰的影响,从而保证一定的瞬态性能和高的气缸输出力轨迹控制精度.实验表明:当系统跟踪幅值为100 N,频率为0.5 Hz的正弦期望轨迹时,平均输出力跟踪误差为1.4 N、最大输出力跟踪误差为3.9 N;基于全阶热力学模型进行控制器设计是必要的,自适应鲁棒控制器是有效的.

关键词: 气动伺服系统力控制滑模控制自适应控制温度观测器    
Abstract:

In order to realize precision force trajectory tracking control of pneumatic force servo system,the control valve flow characteristics and the thermodynamic properties of the air inside pneumatic cylinder chambers were studied and then a nonlinear model of the system was developed. Since the thermodynamic model order reduction will introduce significant modeling errors, temperature observers were constructed to estimate the chamber temperature. Then, an adaptive robust controller based on full-order thermodynamic model was proposed. The controller employs on-line parameter estimation to reduce the extent of parametric uncertainties, and utilizes a nonlinear robust control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Therefore, the prescribed output force transient control performance and high tracking accuracy are guaranteed. Experimental results demonstrate that when a sinusoidal trajectory with amplitude of 100 N, frequency of 0.5 Hz, the average output force tracking error is 1.4 N and the maximum output force tracking error is 3.9 N.It is proven that the proposed controller is effective and the adoption of full-order thermodynamic model is necessary.

Key words: pneumatic servo system    force control    sliding mode control    adaptive control    temperature observer
出版日期: 2013-09-17
:  TP 273  
基金资助:

国家自然科学基金资助项目(50775200,50905156).

通讯作者: 陶国良,男,教授,博导.     E-mail: gltao@zju.edu.cn
作者简介: 孟德远(1982–),男,博士生,从事气动伺服控制研究. E-mail: tinydream@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.

MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system. J4, 2013, 47(9): 1611-1619.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.09.015        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I9/1611

[1] 谢建蔚,陶国良,周洪.气动人工肌肉关节的饱和自适应鲁棒控制[J]. 浙江大学学报:工学版,2008, 42(6): 1032-1035.
XIE Jian-wei, TAO Guo-liang, ZHOU Hong. Tracking control simulation of pneumatic muscle actuator joint using saturated adaptive robust control [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(6): 1032-1035.
[2] 孟德远,陶国良,刘昊,等.基于LuGre模型的气缸摩擦力特性研究[J]. 浙江大学学报:工学版,2012, 46(6):1027-1033.
MENG De-yuan, TAO Guo-liang, LIU Hao, et al. Analysis of friction characteristics of pneumatic cylinders based on LuGre model [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(6): 1027-1033.
[3] RICHER E, HURMUZLU Y. A high performance pneumatic force actuator system: part I-nonlinear mathematic model [J].Journal of Dynamic Systems, Measurement and Control, 1999, 122(9):416425.
[4] RICHER E, HURMUZLU Y. A high performance pneumatic force actuator system: part II- nonlinear controller design [J].Journal of Dynamic Systems, Measurement and Control, 2000, 123(9):426-434.
[5] SHEN X, GOLDFARB M. Simultaneous force and stiffness control of a pneumatic actuator [J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(7):425-434.
[6] KHAYATI K, BIGRAS P, DESSAINT L. Force control loop affected by bounded uncertainties and unbounded inputs for pneumatic actuator systems [J].Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2):01100710110079.
[7] SOMYOT K, MANUKID P. Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control [J]. Mechatronics, 2005, 15:23-41.
[8] MENG D, TAO G, CHEN J, BAN W. Modeling of a pneumatic system for high-accuracy position control [C]∥ International Conference on Fluid Power and Mechatronics. China: IEEE, 2011:505-510.
[9] 曹剑,朱笑丛,陶国良.气动伺服控制中特性参数与结构参数的辨识[J].浙江大学学报:工学版,2010,44(3): 569-573.
CAO Jian, ZHU Xiao-cong, TAO Guo-liang. Identification of characteristic parameters and structure parameters in pneumatic servo control [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(3): 569-573.
[10] CARNEIRO J F, ALMEIDA F G. Reduced-order thermodynamic models for servo-pneumatic actuator chambers [J]. Proc IMechE, Part I, Journal of Systems and Control Engineering, 2006, 220(3): 301-314.
[11] BEATER P. Pneumatic drives [R].New York: Springer, 2007.
[12] YAO B, TOMIZUKA M. Adaptive robust control of SISO nonlinear systems in semi-strict feedback forms [J]. Automatica, 2001, 37(9):1305-1321.
[13] YAO B. Advanced motion control: from classical PID to nonlinear adaptive robust control [C]∥ International Workshop on Advanced Motion Control. Nagaoka: IEEE, 2010:815-829.
[14] ZHU X, TAO G, YAO B, et al. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles[J]. Automatica, 2008, 44(9): 2248-2257.
[15] CARNEIRO J F, ALMEIDA F G. Heat transfer evaluation of industrial pneumatic cylinders [J]. Proc IMechE, Part I, Journal of Systems and Control Engineering, 2007, 221(2): 119-128.

[1] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.
[2] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[3] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[4] 郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.
[5] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[6] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[7] 王飞, 管成, 肖扬, 李威. 挖掘机动臂势能回收系统的压力滑模控制[J]. 浙江大学学报(工学版), 2016, 50(2): 201-208.
[8] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[9] 王班, 易琳, 郭吉丰. 空间绳网机器人的张力控制机构研制与性能研究[J]. 浙江大学学报(工学版), 2015, 49(10): 1974-1981.
[10] 徐兵,丁孺琦,张军辉. 基于泵阀联合控制的负载口独立系统试验研究[J]. 浙江大学学报(工学版), 2015, 49(1): 93-101.
[11] 王尧尧, 顾临怡, 高 明, 贾现军, 朱康武. 水下运载器非奇异快速终端滑模控制[J]. 浙江大学学报(工学版), 2014, 48(9): 1541-1551.
[12] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.
[13] 朱雅光, 金波, 李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报(工学版), 2014, 48(8): 1419-1426.
[14] 程华强,罗尧治,许贤. 自适应张弦梁结构的非线性内力控制[J]. 浙江大学学报(工学版), 2014, 48(7): 1155-1161.
[15] 钱鹏飞, 陶国良, 孟德远, 钟伟, 班伟, 朱晓. 电控气动离合器执行器滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2014, 48(6): 1102-1106.