Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1593-1598    DOI: 10.3785/j.issn.1008-973X.2013.09.012
土木工程、工程力学     
胶黏钢-混凝土组合梁的界面行为数值分析
王玉强1,张宽地2,陈晓东1
1. 浙江水利水电学院 水利工程系,浙江 杭州 310018;2 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100
Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
WANG Yu-qiang1,ZHANG Kuan-di2,CHEN Xiao-dong1
1. Department of Hydraulic Engineering,Zhejiang University of  Water Resources and Electric Power,
Hangzhou 310018,China ;2.College of Water Conservancy and Architectural Engineering, Northwest
Agricultural and Forestry University, Yangling 712100,China
 全文: PDF 
摘要:

根据推出的试验测试数据,将黏胶/混凝土界面的剪切-滑移行为用具备损伤本构关系的弹簧单元来模拟,建立胶黏钢-混凝土组合梁的三维非线性有限元模型.基于模拟结果,揭示了组合梁黏胶/混凝土界面的黏结应力分布规律及脱胶剥离过程.分析结果表明:弹性模量小的黏胶剂更有利于界面的剪力均匀传递,但会引起混凝土板和钢梁间产生大的相对滑动,导致结构整体承载力降低.胶黏组合梁的界面脱胶剥离是一个突发的典型脆性破坏过程,会产生灾难性后果,在设计过程中需引起足够重视.

关键词: 黏胶钢-混凝土组合梁有限元分析界面行为脱胶    
Abstract:

The shear-slip behavior of adhesive/concrete interface was simulated by using the spring element with a damage-type law from the push-out experiment data. A three-dimensional nonlinear finite element model for the adhesive bonded steel-concrete composite beams was proposed. Based on the simulation results, the bonding stress distribution and the debonding process in the adhesive/concrete interface were revealed.  Adhesive with less value of elastic modulus makes the shear transformation more evenly, but it may induce a bigger relative slip between the concrete slab and the steel girder, which may impair the carrying capacity of the composite beams. Numerical results reveal that the debonding failure is a typical brittle destroy process with a catastrophic failure of the composite beams and must be paid enough attention during the design process.

Key words:  adhesive    steel-concrete composite beam    finite element analysis    interface behavior    debonding
出版日期: 2013-09-17
:     
作者简介: 王玉强(1978-),男,副教授,主要从事水利工程结构及施工的教学与研究工作.E-mail:wangyq@zjwchc.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.

WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams. J4, 2013, 47(9): 1593-1598.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.09.012        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I9/1593

[1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8.
NIE Jian-guo,YU Zhi-wu. Research and practice of composite steel-concrete beams in China [J]. China Civil Engineering Journal, 1999, 32(2): 3-8.
[2] 蒋秀根, 剧锦三, 傅向荣. 考虑滑移效应的钢-混凝土组合梁弹性应力计算[J]. 工程力学, 2007, 24(1): 143-146.
JIANG Xiu-gen,JU Jin-san, FU Xiang-rong. Analysis of elastic stress of composite steel-concrete beams considering slip effect[J]. Engineering Mechanics, 2007, 24(1): 143-146.
[3] SWAMY R N, JONES R, BLOXHAM J W. Structural behaviour of reinforced concrete beams strengthened by epoxy-boned steel plates[J]. Structural Engineer: Part A, 1987, 65(2): 59-68.
[4] LU X Z, TENG J G, YE L P, JIANG J J. Bond-slip models for FRP sheets/plates bonded to concrete[J]. Engineering Structures, 2005, 27(6): 920-937.
[5] FERRIER E, QUIERTANT M, BENZARTI K, et al. Influence of the properties of externally bonded CFRP on the shear behavior of concrete/composite adhesive joints[J]. Composites Part B: Engineering, 2010, 41(5): 354-362.
[6] YUAN H, TENG J G, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engineering Structures, 2004, 26(5): 553-565.
[7] NORDIN H, TLJSTEN B. Testing of hybrid FRP composite beams in bending[J]. Composites Part B: Engineering, 2004, 35(1): 27-33.
[8] BOUAZAOUI L, PERRRNOT G, DELMAS Y, et al. Experimental study of bonded steel concrete composite structures[J]. Journal of Constructional Steel Research, 2007, 63: 1268-1278.
[9] THOMANN M, LEBET J P. A mechanical model for connections by adherence for steel-concrete composite beams[J]. Engineering Structures, 2008, 30(1): 163-173.
[10] ZHAO G, LI A. Numerical study of a bonded steel and concrete composite beam[J]. Computers and Structures, 2008, 86: 18301838.
[11] SI LARBI A, FERRIER E, JURKIEWIEZ B, et al . Static behaviour of steel concrete beam connected by bonding[J]. Engineering Structures, 2007, 29(6): 1034-1042.
[12] BERTHET J F, YURTDAS I, DELMAS Y, et al. Evaluation of the adhesion resistance between steel and concrete by push out test[J]. International Journal of Adhesion and Adhesives, 2011, 31(2): 75-83.
[13] Eurocode 4. Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings[S]. London :European Committee for Standardization (CEN), 2004.
[14] CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J]. ACI Journal Proceedings, 1985, 82(6): 797-804.
[15] ACI 318R-08. Building code requirements for structural concrete and commentary[S]. Farmington Hills, MI :American Concrete Institute, 2008.

[1] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[2] 王幸, 徐武, 张晓晶, 张丽娜, 胡本润. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1610-1618.
[3] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[4] 江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 2017, 51(4): 825-833.
[5] 陈伟刚,邓华, 白光波, 董石麟, 朱忠义. 平板型铝合金格栅结构支座节点的承载性能[J]. 浙江大学学报(工学版), 2016, 50(5): 831-840.
[6] 毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 2016, 50(1): 102-110.
[7] 王佼姣, 石永久, 王元清, 潘鹏, 牧野俊雄, 齐雪. 低屈服点钢材LYP100循环加载试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1401-1409.
[8] 狄生奎, 文铖, 叶肖伟. 正交异性钢桥面板结构热点应力有限元分析[J]. 浙江大学学报(工学版), 2015, 49(2): 225-231.
[9] 陈威, 朱伟东, 章明, 赵健冬, 梅标. 叠层结构机器人制孔压紧力预测[J]. 浙江大学学报(工学版), 2015, 49(12): 2282-2289.
[10] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[11] 储火, 陶伟明. 纤维增强复合材料冲击失效的二元模型分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1502-1507.
[12] 孙晓燕, 姚晨纯, 王海龙, 张治成. 基于3D有限元的FRP筋夹片式锚具参数影响分析[J]. 浙江大学学报(工学版), 2014, 48(6): 1058-1067.
[13] 范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇. 水下滑翔机关键承压系统设计与试验研究[J]. J4, 2014, 48(4): 633-640.
[14] 刘刚,刘春,章明,柯臻铮,柯映林,李文清,赵学安. 基于磁场磁力的铁粉纸屑分离机构设计  [J]. J4, 2013, 47(7): 1267-1274.
[15] 林超, 陶友淘, 程凯, 俞松松, 刘垒. 微/纳传动平台的位移耦合分析[J]. J4, 2013, 47(4): 720-727.