Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1573-1578    DOI: 10.3785/j.issn.1008-973X.2013.09.009
土木工程、工程力学     
建筑结构风致响应的时频域计算方法比较
沈国辉1, 王宁博2, 任涛3, 施祖元3, 楼文娟1
1.浙江大学 结构工程研究所, 浙江 杭州 310058|2.中国建筑西北设计研究院,陕西 西安 710003;
3.浙江省建筑设计研究院,浙江 杭州 310006
Comparison of time domain and frequency domain methods to
obtain wind-induced responses of civil engineering structures
SHEN Guo-hui1, WANG Ning-bo2, REN Tao3, SHI Zhu-yuan3, LOU Wen-juan1
1.Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China;
2.China Northwest Building Design Research Institute, Xi’an 710003, China;
3.Zhejiang Institute of Architectural Design, Hangzhou 310006, China
 全文: PDF 
摘要:

针对结构风致响应的时域法结果和频域法结果是否一致的问题,以高层建筑和冷却塔为例比较两种方法在相同的风荷载条件时的响应结果,分析时域法和频域法产生结果差异的原因并给出减少差异的措施,为两种方法在求解结构风致响应的合理应用提供参考.研究表明:频域分析中根据各阶模态的应变能确定该阶模态的贡献程度;计算模型是影响时频域结果吻和程度的一个重要因素,如果两种方法采用相同的计算模型,那么两种方法得到的计算结果会非常接近;计算中结构阻尼的处理方式也是导致时频域计算结果差异的一个原因.

关键词: 风致响应时域法频域法高层建筑冷却塔    
Abstract:

The problem whether the wind-induced responses of civil engineering structures obtained using the time domain method are equal to the responses obtained using the frequency domain method was investigated. Taking a high-rising building and a cooling tower as examples, the responses obtained using these two methods were compared, which were calculated under the same wind loading conditions. The reasons for the discrepancy between the two results were analyzed and the countermeasures to reduce the discrepancy were suggested. This study can be a good reference for the rational application of these two methods in solving the wind-induced responses of structures. Results show that the contribution of a certain vibration mode can be quantified by the strain energy of the mode in the frequency domain analysis. The calculating model is one of dominating factors leading to the discrepancy of the results obtained using the time and frequency domain methods. If the same calculating model is used, the results obtained using these two methods will be close. The treatment of structural damping during the calculating process is also a reason leading to the discrepancy of the results.

Key words:  wind-induced response    time domain method    frequency domain method    high-rise building    cooling tower
出版日期: 2013-09-17
:  TU 312.1  
基金资助:

国家自然科学基金资助项目(51178425).

作者简介: 沈国辉(1977-),男,副教授,主要从事结构风工程和结构计算分析. E-mail: ghshen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.

SHEN Guo-hui, WANG Ning-bo, REN Tao, SHI Zhu-yuan, LOU Wen-juan. Comparison of time domain and frequency domain methods to
obtain wind-induced responses of civil engineering structures. J4, 2013, 47(9): 1573-1578.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.09.009        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I9/1573

[1] 裴永忠, 寇岩滔, 朱丹, 等. 北京A380机库风洞试验及风振响应分析[J]. 土木工程学报, 2008, 41(2):22-28.
PEI Yong-zhong, KOU Yan-tao, ZHU Dan, et al. Wind tunnel test and wind-induced dynamic analysis of Beijing A380 hanger [J]. China Civil Engineering Journal, 2008, 41(2):22-28.
[2] 鲍侃袁,沈国辉,孙炳楠. 双曲冷却塔的脉动风荷载模拟和风致响应研究[J], 浙江大学学报:工学版, 2010, 44(5):955-961.
BAO Kan-yuan, SHEN Guo-hui, SUN Bing-nan. Numerical simulation of fluctuating wind load and wind-induced response of large hyperbolic cooling tower [J]. Journal of Zhejiang University :Engineering Science, 2010, 44(5):955-961.
[3] UEMATSU Y, SONE T, YAMADA M. Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans[J]. Wind and Structures, 2002, 5(6):543562.
[4] 谢壮宁,方小丹,倪振华. 超高层建筑的等效静风荷载-扩展荷载响应相关方法[J].振动工程学报,2008,21(4):398-403.
XIE Zhuang-ning, FANG Xiao-dan, NI Zhen-hua. Equivalent static wind loads on tall building - the extended load-response-correlation (ELRC) approach [J]. Journal of Vibration Engineering, 2008,21(4):398-403.
[5] 李杰,倪振华,谢壮宁. 单层球面网壳风振分析的时域法和频域法比较[J]. 建筑科学与工程学报, 2008,25(2):45-50.
LI Jie, NI Zhen-hua, XIE Zhuang-ning. Comparison of wind-induced vibration analysis of single-layer spherical latticed shells between time domain method and frequency domain method [J]. Journal of Architercture and Civil Engineering, 2008,25(2):45-50.
[6] 顾明, 周暄毅, 黄鹏. 大跨屋盖结构风致抖振响应研究[J]. 土木工程学报, 2006, 39(11):37-42.
GU Ming, ZHOU Xuan-yi, HUANG Peng. A study on the wind-induced buffeting responses of large-span roof structure [J]. China Civil Engineering Journal, 2006, 39(11):37-42.
[7] 李波, 杨庆山, 范重, 等. 深圳京基金融中心风振响应分析[J]. 土木工程学报, 2010, 43(8):30-36.
LI Bo, YANG Qing-shan, FAN Zhong, et al. Analysis of wind-induced responses of Shenzhen KingKey finance tower [J]. China Civil Engineering Journal, 2010, 43(8):30-36.
[8] CHOPRA A K. Dynamic of structures: theory and application to earthquake engineering [M]. New Jersey: Prentice Hall Press, 2000:623-627.
[9] 沈国辉, 楼文娟, 钱涛. 浙江影视后期制作综合大楼风洞试验报告[R]. 杭州:浙江大学建筑工程学院, 2011:15-20.
SHEN Guo-hui, LOU WEN-juan, QIAN Tao. Wind tunnel testing report of Zhejiang video post-production complex building[R]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2011:15-20.
[10] 徐培福. 复杂高层建筑结构设计[M]. 北京:中国建筑工业出版社, 2005:32-37.
[11] 沈国辉,余关鹏,孙炳楠,等. 模型表面粗糙度对冷却塔风荷载的影响[J].工程力学, 2011, 28(3): 86-93.
SHEN Guo-hui, YU Guan-peng, SUN Bing-nan, et al. The influence of modal surface roughness on wind loads of cooling towers [J]. Engineering Mechanics, 2011, 28(3): 8693.
[12] LEE U. Spectral element method in structural dynamics [M]. Singapore:Wiley, 2009:23-24.
[13] 刘展, 祖景平, 钱英莉, 等. ABAQUS66基础教程与实例详解[M], 北京:中国水利水电出版社, 2008:289-294.

[1] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[2] 楼文娟, 罗罡, 杨晓辉, 卢明. 典型覆冰导线脉动气动力特性及风偏响应[J]. 浙江大学学报(工学版), 2017, 51(10): 1988-1995.
[3] 王磊, 梁枢果,王泽康,张正维. 超高层建筑横风向风振局部气动外形优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1239-1246.
[4] 柯世堂,朱鹏. 基于大涡模拟增设气动措施冷却塔风荷载频域特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2143-2149.
[5] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[6] 王磊,梁枢果,邹良浩,汤怀强,王述良.  超高层建筑涡振过程中体系振动频率[J]. 浙江大学学报(工学版), 2014, 48(5): 805-812.
[7] 汪超, 董飞英, 范利武, 俞自涛, 胡亚才. 盐水冷却塔传热传质特性的实验研究[J]. J4, 2014, 48(4): 666-670.
[8] 钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.
[9] 林巍, 楼文娟, 申屠团兵, 黄铭枫. 高层建筑脉动风压的非高斯峰值因子方法[J]. J4, 2012, 46(4): 691-697.
[10] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[11] 沈国辉, 余关鹏, 孙炳楠, 楼文娟, 李庆祥, 杨仕超. 大型冷却塔风致响应的干扰效应[J]. J4, 2012, 46(1): 33-38.
[12] 汪小娣,沈金,楼文娟. 高层建筑边角凹凸对体型系数分布的影响[J]. J4, 2012, 46(1): 20-26.
[13] 章李刚, 楼文娟,申屠团兵. 不规则结构扭转风荷载[J]. J4, 2011, 45(6): 1094-1099.
[14] 楼文娟, 李进晓, 沈国辉, 黄铭枫. 超高层建筑脉动风压的非高斯特性[J]. J4, 2011, 45(4): 671-677.
[15] 鲍侃袁, 沈国辉, 孙炳楠. 双曲冷却塔的脉动风荷载模拟和风致响应[J]. J4, 2010, 44(5): 955-961.