Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1450-1456    DOI: 10.3785/j.issn.1008-973X.2013.08.019
机械工程     
皮星1号A卫星(ZDPS-1A)被动热控制技术
吴昌聚, 徐秀琴
浙江大学 航空航天学院,浙江 杭州 310027
Passive thermal control technology of ZDPS-1A satellite
 WU Chang-ju, XU Xiu-qin
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

针对皮卫星体积小、质量轻、热容量小和热容密度大等特点带来的热控设计难点,提出完全被动热控以及覆盖法的设计方法.通过对皮卫星热控输入进行详细的分析,提出被动热控的具体措施,并建立热控模型进行仿真计算.进行地面试验和在轨试验.试验结果表明,在轨温度和在地面试验时的温度基本一致,并都在计算得到的温度范围之内.说明完全被动热控以及覆盖法的设计方法在皮卫星上的运用非常成功,为后续皮卫星热控的设计提供借鉴.

关键词: 皮卫星被动热控覆盖法温度    
Abstract:

In view of the design difficulty of thermal control caused by the small volume, light weight, small heat capacity and large heat flow density of the pico-satellite, passive thermal control and cover method were used. Through the detailed analysis of thermal control design input, the passive thermal control and cover method were proposed. The thermal model was set up and simulated. Also the experiments on ground and in orbit were done. The results show that the temperatures in orbit and on ground match well, and both within the temperature range of calculated results. It reveals that the passive thermal control and cover method are applied successfully in the pico-satellite, which provides reference for the pico-satellite thermal control in the future.

Key words: Pico-satellite    passive thermal control    cover method    temperature
出版日期: 2013-09-05
:  V 417  
基金资助:

国家自然科学基金资助项目(60904090).

作者简介: 吴昌聚(1977—),男,副教授,主要从事微小卫星结构、热控等方面的研究. E-mail: wuchangju@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴昌聚, 徐秀琴. 皮星1号A卫星(ZDPS-1A)被动热控制技术[J]. J4, 2013, 47(8): 1450-1456.

WU Chang-ju, XU Xiu-qin. Passive thermal control technology of ZDPS-1A satellite. J4, 2013, 47(8): 1450-1456.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.08.019        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I8/1450

[1] WEEREN H, BRAKE H, HOLL G. Thermal aspects of satellite downscaling [J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 592-600.

[2] SCHOLZ A, LEY W, DACHWALD B, et al. Flight results of the COMPASS-1 picosatellite mission [J]. Acta Astronautica, 2010, 67: 1289-1298.

[3] LABERTEAUX J, MOESTA J, BERNARD B. Advanced picosatellite experiment [J]. Aerospace and Electronic Systems Magazine, 2009, 24(9): 4-9.

[4] HIROKI A, KOTA F, SHINICHI I, et al. Design of Tokyo tech nano-satellite cute-1.7+APD II and its operation [J]. Acta Astronautica, 2010, 66: 1412-1424.

[5] KATAOKA J, TOIZUMI T, NAKAMORI T. In-orbit performance of avalanche photodiode as radiation detector on board the picosatellite Cute-1.7+APD II [J]. Journal of Geophysical Research-Space Physics, 2010, 115: A05204/1A05204/9.

[6] SHINICHI N, NOBUTADA S, HIRONORI S, et al. Evolution from education to practical use in University of Tokyo’s nano-satellite activities [J]. Acta Astronautica, 2010, 66: 1099-1105.

[7] HAMANN R J, VERHOEVEN C J M. Nano-satellites, a fast way to pre-qualify new micro-technology [C]∥ 2005 International Conference on MEMS, NANO and Smart Systems. Banff, Alberta, Canada: IEEE Computer Society, 2005: 263-264.

[8] KARAN S, STUART E, ERIC C, et al. Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite [J]. Acta Astronautica, 2006, 59: 236-245.

[9] CHANG Y K, MOON B Y, HWANG K L, et al. Development of the HAUSAT-2 nanosatellite for low-cost technology demonstration [C]∥ Proceedings of 2nd International Conference on Recent Advances in Space Technologies. Istanbul, Turkey: Institute of electrical and electronics engineers, 2005: 173-179.

[10] 麻慧涛,钟奇,范含林,等.微型卫星热控技术研究[J].航天器工程, 2006, 15(2): 6-13.

MA Hui-tao, ZHONG Qi, FAN Han-lin, et al. Research on micro satellite thermal control technology [J]. Spacecraft Engineering, 2006, 15(2): 6-13.

[1] 刘士兴, 范对鹏, 程龙, 王世超, 丁力, 易茂祥. 静态随机存储器双向互锁存储单元的抗老化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1453-1461.
[2] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[3] 宋瑞祥, 张庆国, 于海敬, 徐丽, 施悯悯. 遥感数据的城市不透水面估算及增温效应[J]. 浙江大学学报(工学版), 2017, 51(5): 1051-1056.
[4] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[5] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[6] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.
[7] 崔璟, 尹凌峰, 郭小明, 唐敢. 基于残余位移的空间结构火灾温度场推定方法[J]. 浙江大学学报(工学版), 2016, 50(4): 720-726.
[8] 唐志刚,张力,陈曦,王庆朋. 壁面温度对微型内燃机燃烧特性的影响[J]. 浙江大学学报(工学版), 2016, 50(11): 2107-2112.
[9] 徐秀琴, 莫炯炯, 王志宇, 尚永衡, 郭丽丽, 郁发新. 芯片级PHEMT热特性等效方法[J]. 浙江大学学报(工学版), 2016, 50(10): 2002-2008.
[10] 宁峰平,姚建涛,孙锟,马明臻,赵永生. 多因素耦合对空间轴承热学特性的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 129-136.
[11] 唐巍,夏芝香,夏良燕,方梦祥,王勤辉,骆仲泱. 低温煤焦油加氢精制-裂化工艺流程模拟[J]. 浙江大学学报(工学版), 2015, 49(5): 924-929.
[12] 谢阳,姚子澍,麻剑,罗麒元,许沧粟. 柴油温度对喷孔内流动特性影响的仿真分析[J]. 浙江大学学报(工学版), 2015, 49(5): 938-943.
[13] 欧祖敏,孙璐,程群群. 高速铁路无砟轨道温度场简化计算方法[J]. 浙江大学学报(工学版), 2015, 49(3): 482-487.
[14] 刘逸祥, 童根树, 张磊. 耐火钢圆钢管混凝土柱耐火极限和承载力[J]. 浙江大学学报(工学版), 2015, 49(2): 208-217.
[15] 饶蕾, 计春雷. AM0光谱下三结太阳能电池的温度及聚光特性[J]. 浙江大学学报(工学版), 2015, 49(12): 2269-2275.