Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1403-1410    DOI: 10.3785/j.issn.1008-973X.2013.08.012
电气工程     
组合核支持向量机高光谱图像分类
厉小润1, 朱洁尔1, 王晶1, 赵辽英2
1. 浙江大学 电气工程学院,浙江 杭州 310027;2. 杭州电子科技大学 计算机应用技术研究所, 浙江 杭州 310018
Hyperspectral image classification based on compsite kernels support vector machine
LI Xiao-run1, ZHU Jie-er1, WANG Jing1, ZHAO Liao-ying2
1 College of Electrical Engineering,Zhejiang University,Hangzhou 310027, China; 2. Institute of Computer Application Technology, HangZhou Dianzi University,Hangzhou 310018, China
 全文: PDF 
摘要:

为了提高高光谱遥感图像分类中空间信息的利用率,提出一种将空间邻域信息和光谱信息结合的组合核支持向量机(SVM)学习算法.用SVM进行预分类,从分类结果图提取各像素的空间邻域特征,与光谱特征结合构造组合核SVM进行分类,并再次提取空间邻域特征进行多次空-谱信息组合核SVM迭代分类,如此迭代10次,从中选择合适的结果作为最终输出.结果表明,该方法对传统支持向量机的分类精度提升幅度可达10%左右.同时,与其他组合核支持向量机相比,该算法用更少的训练样本获得了更高分类精度.

关键词:  高光谱图像分类支持向量机空间邻域组合核    
Abstract:

To improve the utilization of spatial information when classifying hyperspectral images, this paper proposes a composite kernel SVM algorithm combining spatial and spectral information. First, the hyperspectral image was classified into a map using conventional SVM. The spatial-contextual features were then extracted based on the classified map, and combined with spectral information to construct a composite kernel SVM for classification. The spatial-contextual features were extracted again and the composite kernel SVM classified the image iteratively. The process was repeated 10 times and a proper one was chosen as the last outcome. The results show that the method increases the overall accuracy by around 10%, compared with conventional SVM. In addition, the method also demands much less training samples than usual SVM.

Key words: hyperspectral image classification    support vector machine    spatial-contextual    composite kernel
出版日期: 2013-09-05
:  TP 751.1  
基金资助:

国家自然科学基金资助项目(61171152);教育部支撑计划项目资助项目(625010216);浙江省自然科学基金资助项目(LY13F020044).

作者简介: 厉小润(1970—),男,研究员,主要从事模式识别、遥感图像分析、计算机应用方面研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

厉小润, 朱洁尔, 王晶, 赵辽英. 组合核支持向量机高光谱图像分类[J]. J4, 2013, 47(8): 1403-1410.

LI Xiao-run, ZHU Jie-er, WANG Jing, ZHAO Liao-ying. Hyperspectral image classification based on compsite kernels support vector machine. J4, 2013, 47(8): 1403-1410.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.08.012        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I8/1403

[1] WANG Xiang-tao, FENG Yan. New method based on support vector machine in classification for hyperspectral data [C]∥ 2008 International Symposium on Computational Intelligence and Design. Wuhan: [s. n.], 2008: 76-80.

[2] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing image with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.

[3] 高恒振,万建伟,粘永健,等.组合核函数支持向量机高光谱图像融合分类[J].光学精密工程,2011,19(4): 878-883.

GAO Heng-zhen, WAN Jian-wei, NIAN Yong-jian, et al. Fusion classification of hyperspectral image by composite kernels support vector machine [J]. Optics and Precision Engineering, 2011, 19(4): 878-883.

[4] DUAN Shan. Mathematical morphology and its Application research in remote sensing image processing [D]. Wuhan: Wuhan Univesity, 2004.

[5] 陈君颖,田庆久.高分辨率遥感植被分类研究[J].遥感学报,2007, 11(2): 221-227.

CHEN Jun-ying, TIAN Qing-jiu. Vegetation classification based on high-resolution satellite image [J]. Journal of Remote Sensing, 2007, 11(2): 221-227.

[6] TAN Kun, DU Pei-jun. Combined multi-kernel support vector machine and wavelet analysis for hyperspectral remote sensing image classification [J]. Chinese Optics Letters, 2011, 9(1): (011003-1)-(011003-4).

[7] BERNARD K, TARABALKA Y, ANGULO J, et al. Spectral-Spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 21(4): 2008-2021.

[8] LI Cheng-hsuan, KUO Bor-chen, LIN Chin-teng, et al. A spatial-contextual support vector machine for remotely sensed image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 784-799.

[9] BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers [C]∥ Proc.5th Annu. Workshop Comput.Learn.Theory. [s. l.]: [s. n.],1992: 144-152.

[10] DU Qian, YANG He. Similarity-based unsupervised band selection for hyperspectral image analysis [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 564-568.

[11] BIOUCAS-DIAS J M, NASCIMENTO J M P. Hyperspectral Subspace Identification [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 46(8): 564-568.

[12] CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J. Composite kernels for hyperspectral Image classication [J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93-97.

[1] 袁红, 王波, 王丽, 许睦旬. 以轮廓为对象的体态特征情绪分类与预测[J]. 浙江大学学报(工学版), 2018, 52(1): 160-165.
[2] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[3] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[4] 任迪, 万健, 殷昱煜, 周丽, 高敏. 基于贝叶斯分类的Web服务质量预测方法研究[J]. 浙江大学学报(工学版), 2017, 51(6): 1242-1251.
[5] 宋瑞祥, 张庆国, 于海敬, 徐丽, 施悯悯. 遥感数据的城市不透水面估算及增温效应[J]. 浙江大学学报(工学版), 2017, 51(5): 1051-1056.
[6] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[7] 蒋鑫龙, 陈益强, 刘军发, 忽丽莎, 沈建飞. 面向自闭症患者社交距离认知的可穿戴系统[J]. 浙江大学学报(工学版), 2017, 51(4): 637-647.
[8] 朱东阳, 沈静逸, 黄炜平, 梁军. 基于主动学习和加权支持向量机的工业故障识别[J]. 浙江大学学报(工学版), 2017, 51(4): 697-705.
[9] 廖苗, 赵于前, 曾业战, 黄忠朝, 张丙奎, 邹北骥. 基于支持向量机和椭圆拟合的细胞图像自动分割[J]. 浙江大学学报(工学版), 2017, 51(4): 722-728.
[10] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[11] 张捷, 肖新标, 王瑞乾, 金学松. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版), 2017, 51(3): 545-553.
[12] 李晓东, 祝跃飞, 刘胜利, 肖睿卿. 基于权限的Android应用程序安全审计方法[J]. 浙江大学学报(工学版), 2017, 51(3): 590-597.
[13] 苏星, 王慧泉, 金仲和. 实时高可靠综合电子系统的逻辑架构设计[J]. 浙江大学学报(工学版), 2017, 51(3): 628-636.
[14] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[15] 张伟, 胡友德, 郑立荣. 基于频率可调驻波振荡器的芯片时钟系统设计[J]. 浙江大学学报(工学版), 2017, 51(1): 168-176.