Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1373-1378    DOI: 10.3785/j.issn.1008-973X.2013.08.008
土木工程     
大气腐蚀下网架结构症状可靠度及寿命预测
肖南1, 王海1, 陈华鹏2, 张飞林3
1. 浙江大学 建筑工程学院,浙江 杭州 310058;2. 格林威治大学 土木工程系,英国 肯特 ME4 4TB; 3. 上海民航新时代机场设计研究院有限公司,上海 200131
Symptom-based reliability and lifetime prediction for latticed structures under atmospheric corrosion
XIAO Nan1, WANG Hai1, CHEN Hua-peng2, ZHANG Fei-lin3
1.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. Department  of Civil Engineering, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK; 3. Shanghai Civil Aviation New era Airport Design & Research Institute Co., Ltd. Shanghai 200131, China.
 全文: PDF 
摘要:

为了确定网架结构因钢材遭受大气腐蚀而引起的结构性能退化,用钢材长期暴露腐蚀试验所得的模型代替实际腐蚀过程,建立以杆件应力为主要症状的结构可靠度方法.在杆件壁厚随时间不断改变的条件下,将控制杆件的应力随时间变化曲线用于拟合Weibull模型曲线,以此生命症状模型对网架结构进行基于症状的可靠度分析和结构剩余寿命预测.考虑实际健康监测所得症状值与理论预测值的差异,对可靠度分析结果进行修正.算例结果表明,在单一损伤所致性能退化条件下,结构可靠度和结构剩余寿命以设计年限为基准,逐年递减.该结论与相关文献的结果一致.

关键词: 网架结构基于症状可靠度寿命预测大气腐蚀    
Abstract:

In order to determine the performance deterioration of latticed structures subjected to steel corrosion under atmospheric exposure, symptom-based reliability method employing stress evolutions of structural members as a primary symptom was presented, where the practical steel corroding process was replaced by the model gained from long term experimental results of steel exposed in corrosive environment. The Weibull model curve, fitted by the stress-time curve of the controlling member with its wall thickness decreasing constantly, was employed for symptom-based reliability analysis and lifetime prediction of latticed structures. Considering the discrepancy between symptom data from the practical health monitoring and those from the analytical results, the predictions of symptom-based reliability analysis were updated. The results from a case study show that the structural reliability and remaining useful lifetime drcrease year by year, based on the design reference under the consideration of the performance deterioration due to the single cause for damage. This conclusion grees with those published in previous papers.

Key words: latticed structuressymptom-based    reliability    lifetime prediction    atmospheric corrosion
出版日期: 2013-09-05
:  TU 391  
基金资助:

肖南(1965—),男,副教授,主要从事大跨度空间结构的研究. E-mail: sholran@zju.edu.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

肖南, 王海, 陈华鹏, 张飞林. 大气腐蚀下网架结构症状可靠度及寿命预测[J]. J4, 2013, 47(8): 1373-1378.

XIAO Nan, WANG Hai, CHEN Hua-peng, ZHANG Fei-lin. Symptom-based reliability and lifetime prediction for latticed structures under atmospheric corrosion. J4, 2013, 47(8): 1373-1378.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.08.008        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I8/1373

[1] 赵国藩,金伟良,贡金鑫.结构可靠度理论[M].1版.北京:中国建筑工业出版社, 2000: 14-15.

[2] CERAVOLO R, PESCATORE M, STEFANO A D. Symptom-based reliability and generalized repairing cost in monitored bridges [J]. Reliability Engineering and System Safety, 2009(94): 1331-1339.

[3] CEMPEL C. Vibroacoustical condition monitoring[M]. Chichester: Ellis Horwood Ltd, 991: 107-148.

[4] CEMPEL C, NATKE H G, YAO J T P. Symptom reliability and hazard for systems condition monitoring [J]. Mechanical Systems and Signal Processing, 2000,14 (3): 495-505.

[5] CERAVOLO R, STEFANO A D, PESCATOREA M. Change in dynamic parameters and safety assessment of civil structures [J]. Mechanics of Time-Dependent Materials, 2008, 12(4): 365-376.

[6] CHEN H P, XIAO N. Symptom-based damage prognosis for deteriorating RC bridge structures [C] ∥The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology. Dalian: ANCRISST, 2011, paper ID: 026, 1-12.

[7] MENDOZA A R, CORVO F. Outdoor and indoor atmospheric corrosion of carbon steel [J]. Corrosion Science, 1999(41): 75-86.

[8] OH S J, COOK D C, TOWNSEND H E. Atmospheric corrosion of different steels in marine, rural and industrial environments[J]. Corrosion Science, 1999(41): 1687-1702.

[9] 美国腐蚀工程师协会.腐蚀与防护技术基础[M].北京:冶金工业出版社, 1987: 356-390.

[10] 黄建中,左禹.材料的耐蚀性和腐蚀数据[M].北京:化学工业出版社,2003: 72-124.

[11] 梁彩凤,侯文泰.碳钢、低合金钢16年大气暴露腐蚀研究[J].中国腐蚀与防护学报,2005, 25(1): 1-6.

LIANG Cai-feng, HOU Wen-tai. Sixteen-year atmospheric corrosion exposure of steels [J]. Journal of Chinese Society for Corrosion and Protection, 2005, 25(1): 1-6.

[12] 梁佶,林书明,陈春雷.钢结构的大气腐蚀模型[J].空间结构.2004,10(4): 60-63.

LIANG Ji, LIN Shu-ming, CHEN Chun-lei. Atmospheric corrosion model of steel structures[J]. Spatial Structures, 2004, 10(4): 60-63.

[13] 王凤平,张学元,杜元龙.大气腐蚀研究动态与进展[J].腐蚀科学与防护技术,2000, 12(2): 104-108.

WANG Feng-ping, ZHANG Xue-yuan, DU Yuan-long. The review of atmospheric corrosion research[J]. Corrosion Science and Protection Technology, 2000, 12(2): 104-108.

[14] KUCERA V, KNOTKOVA D, GULLMAN J, et al. Corrosion of structural metals in atmospheres with different corrosivity at 8 year exposure in Sweden and Czechoslovakia[J]. Key Engineering Materials, 1991(20): 167-177.

[15] SHASTRY C R, FRIEL J J, TOWNSEND H E. Sixteen year atmospheric corrosion performance of weathering steels in marine, rural and industrial environments[J]. Degradation of Metals in Atmosphere, 1988: 5.

[16] 王景茹,张峥,朱立群.碳钢、低合金钢大气腐蚀数学模型研究[J].航空材料学报,2004, 24(2): 41-46.

WANG Jing-ru, ZHANG Zheng, ZHONG Qun-peng. Research on mathematical model of carbon steel and low alloy steel in atmosphere [J]. Journal of Aeronautical Materials, 2004, 24(2): 41-46.

[17] 孙晓燕,潘宏,王海龙,等.大气环境下服役公路梁桥结构时变可靠度分析[J].浙江大学学报:工学版,2012, 46(4): 643-649.

SUN Xiao-yan, PAN Hong, WANG Hai-long, et al. Time-dependent reliabilibity analysis of existing bridges under atmospheric environment [J]. Journal of Zhejiang University :Engineering Science, 2012, 46(4): 643-649.

[18] 邵煜,张土乔,俞亭超.考虑腐蚀的埋地灰口铸铁管失效预测及可靠度分析[J].浙江大学学报:工学版, 2010, 44(1): 160-165.

SHAO Yu, ZHANG Tu-qiao, YU Ting-chao. Failure prediction and reliability analysis of buried grey cast iron water mains considering corrosion [J]. Journal of Zhejiang University :Engineering Science, 2010, 44(1): 160-165.

[19] 邵煜,虞介泽,俞亭超.埋地管线均匀腐蚀失效力学模型及随机分析[J].浙江大学学报:工学版,2010, 44(6): 1225-1230.

SHAO Yu, YU Jie-ze, YU Ting-chao. Mechanical model and probability analysis of buried pipelines failure under uniform corrosion [J]. Journal of Zhejiang University :Engineering Science, 2010, 44(6): 1225-1230.

[20] CEMPEL C. Theory of energy transforming systems and their application in diagnostics of operating systems [J]. Applied Mathematics in Computer Science, 1993, Issues 3, 533-548.

[21] CEMPEL C. Passive diagnostic experiment, symptom reliability and their application in vibration condition monitoring[J]. Zagadnienia Eksploatacji Maszyn, 1990, 23, 343-355.

[22] JGJ 7-2010. 空间网格结构技术规程(2011)[S].北京:中国建筑工业出版社,2010.

JGJ 7-2010. Technical specification for space frame structures (2011) \
[S\]. Beijing: China Buiding industry Press, 2010.

[1] 廖燕华, 谢旭, 唐站站. Q345qC钢及焊接接头低周疲劳性能与断裂机理[J]. 浙江大学学报(工学版), 2018, 52(1): 73-81.
[2] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687.
[3] 肖新辉,鲁乃唯, 刘扬. 随机车流下公路钢桥疲劳可靠度分析[J]. 浙江大学学报(工学版), 2016, 50(9): 1777-1783.
[4] 鲁乃唯, 罗媛, 汪勤用, Noori Mohammad. 车载下大跨度桥梁动力可靠度评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2328-2335.
[5] 刘扬,鲁乃唯,蒋友宝. 结构体系可靠度分析的改进支持向量回归[J]. 浙江大学学报(工学版), 2015, 49(9): 1692-1699.
[6] 赖雄鸣, 张勇, 王成, 言兰, 缑锦. 基于OELM重构极限状态函数的可靠度计算方法[J]. 浙江大学学报(工学版), 2015, 49(4): 692-698.
[7] 肖南,万洁. 考虑应力松弛的张力结构症状可靠度分析[J]. 浙江大学学报(工学版), 2014, 48(7): 1195-1201.
[8] 田浩, 金小平, 陈艾荣. 基于概率的钢筋混凝土桥梁加固措施影响分析[J]. J4, 2012, 46(6): 1097-1106.
[9] 武海荣, 金伟良, 延永东, 夏晋. 混凝土冻融环境区划与抗冻性寿命预测[J]. J4, 2012, 46(4): 650-657.
[10] 孙晓燕, 潘宏, 王海龙, 王建秀. 大气环境下服役公路梁桥结构时变可靠度分析[J]. J4, 2012, 46(4): 643-649.
[11] 武海荣,金伟良,吕清芳,王海龙. 基于可靠度的混凝土结构耐久性环境区划[J]. J4, 2012, 46(3): 416-423.
[12] 孙晓燕,董伟伟,王海龙,王捷. 考虑生命周期碳补偿成本的桥梁维修优化决策[J]. J4, 2012, 46(11): 2013-2019.
[13] 金伟良,李志远,许晨. 基于相对信息熵的混凝土结构寿命预测方法[J]. J4, 2012, 46(11): 1991-1997.
[14] 张成,吴慧,高博青,汪毅俊. 基于模糊聚类的网架结构动力失效模式识别[J]. J4, 2011, 45(7): 1276-1280.
[15] 邵煜, 虞介泽, 俞亭超. 埋地管线均匀腐蚀失效力学模型及随机分析[J]. J4, 2010, 44(6): 1225-1230.