Please wait a minute...
J4  2013, Vol. 47 Issue (7): 1186-1191    DOI: 10.3785/j.issn.1008-973X.2013.07.008
土木工程     
集料分布对沥青混合料劈裂强度影响数值分析
彭勇,徐小剑
浙江大学 交通工程研究所,浙江 杭州 310058  
Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures
PENG Yong, XU Xiao-jian
Institute of Transportation Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF 
摘要:

基于数字图像处理,研究沥青混合料集料分布状态.采用有限元法建立基于沥青混合料二维截面的劈裂试验模型,数值分析集料分布状态对虚拟劈裂试验力学性能的影响,并通过室内劈裂试验进行验证.研究结果表明:基于数字图像处理,通过集料分布状态指标可以评价沥青混合料集料分布状态;集料公称最大粒径增大,沥青混合料集料分布状态变差;集料分布状态与沥青混合料虚拟劈裂试验力学性能变异性存在明显的相关性,集料分布状态越差,通过沥青混合料虚拟劈裂试验计算得到的压头反力均值的变异系数越大.

关键词: 沥青混合料集料分布状态劈裂试验有限元法数字图像处理    
Abstract:

The aggregate distribution in asphalt mixtures was analyzed based on digital image processing. The splitting test model based on two-dimensional  cross sections of asphalt mixtures was established by the finite element method. The effect of aggregate distribution on the mechanical properties of asphalt mixtures was numerically analyzed and verified by the laboratory splitting test. Results show that the aggregate distribution in asphalt mixtures can be assessed by the index of aggregate distribution based on digital image processing. The aggregate distribution in asphalt mixtures deteriorates with an increase in the nominal maximum aggregate size. There is an obvious relationship between aggregate distribution and variations in the mechanical properties of the virtual splitting test of asphalt mixtures. The worse the aggregate distribution is, the greater the variation coefficient of the average pressure head reaction forces is.

Key words: asphalt mixture    aggregate distribution    splitting test    finite element method    digital image processing
出版日期: 2013-08-15
:     
基金资助:

浙江省自然科学基金资助项目(Y1080276);同济大学道路与交通工程教育部重点实验室开放基金资助项目(201101).

作者简介: 彭勇(1976-),男,副教授,从事路面结构与路面材料的研究.E-mail:ypeng@ zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.

PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures. J4, 2013, 47(7): 1186-1191.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.07.008        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I7/1186

[1] 尹健标,王端宜. 沥青路面施工离析与早期损坏关系的研究[J]. 中外公路,2010,30(2): 75-79.
YIN Jian-biao, WANG Duan-yi. Research on the relation between segregation in construction and early damage of asphalt pavement layers [J]. Journal of China and Foreign Highway, 2010, 30(2): 75-79.
[2] KHEDAYWI T S, WHITE T D. Effect of segregation on fatigue performance of asphalt paving mixtures [J]. Transportation Research Record, 1996, 1543: 63-70.
[3] AZARI H, MCCUEN R H, STUART K. Effect of radial inhomogeneity on shear properties of Asphalt mixtures [J]. Journal of Material in Civil Engineering, 2005, 17(1): 80-88.
[4] HUNTER A E, AIREY G D, COLLOP A C. Aggregate orientation and segregation in laboratory compacted asphalt samples [J]. Transportation Research Record, 2004, 1891: 8-15.
[5] 陈华,英红,张健. 一种基于数字图像处理技术的沥青混合料均匀性评价方法[J]. 公路工程,2007,32(6): 174-176.
CHEN Hua, YING Hong, ZHANG Jian. A method to evaluate segregation in hot-mix asphalt based on digital image processing [J]. Highway Engineering, 2007, 32(6): 174-176.
[6] 彭勇. 基于数字图像处理技术沥青混合料均匀性指标研究[D]. 上海: 同济大学,2005: 35-64.
PENG Yong. The index of asphalt mixture homogeneity based on digital image processing [D].Shanghai: Tongji University, 2005: 35-64.
[7] 吴文亮,李智,王端宜,等. 基于不同成型方法的沥青混合料均匀性评价[J]. 施工机械与施工技术,2011,28(4): 47-49.
WU Wen-liang, LI Zhi, WANG Duan-yi, et al. Evaluation of uniformity of asphalt mixture based on different compaction methods [J]. Construction Machinery and Construction Technology, 2011, 28(4): 47-49.
[8] CHANG G K, MEEGODA J N. Micro-mechanic model for temperature effects of hot mixture asphalt concrete [J]. Transportation Research Record, 1999, 1687: 95-103.
[9] BUTTLAR W G, YOU Z. Discrete element modeling of asphalt concrete: microfabric approach [J]. Transportation Research Record, 2001, 1757: 111-118.
[10] GUDDATI M N, FENG Z, KIM R. Toward a micromechanics-based procedure to characterize fatigue performance of asphalt concrete [J]. Transportation Research Record, 2002, 1789: 121-128.
[11] WANG L B, MYERS L A, MOHAMMAD L N, et al. Micromechanics study on top-down cracking [J]. Transportation Research Record, 2003, 1853: 121-133.
[12] DAI Q, SADD M H. Parametric model study of microstructure effects on damage behavior of asphalt samples [J]. International Journal of Pavement Engineering, 2004, 5(1): 19-30.
[13] KIM H, BUTTLAR W G. Micromechanical fracture modeling of asphalt mixture using the discrete element method [C]∥ ASCE  Advances in Pavement Engineering.\
[S.l.\]:ASCE, 2005:209-223.
[14] SADD M H, DAI Q, PARAMESWARAN V. microstructural simulation of asphalt materials: modeling and experimental studies [J]. Journal of Materials in Civil Engineering, 2004, 16(2): 107-115.
[15] LI G, LI Y, METCALF J B, et al. Elastic modulus prediction of asphalt concrete [J]. Journal of Materials in Civil Engineering, 1999, 11(3): 236-241.
[16] YOU Z P, ADHIKARI S, DAI Q L. Three-dimensional discrete element models for asphalt mixtures [J]. Journal of Engineering Mechanics, 2008, 134(12): 1053-1063.
[17] CHEN Jun, HUANG Xiao-ming. Virtual fracture test of asphalt mixture based on discrete element method [J]. Journal of Southeast University: English Edition, 2009, 25(4): 518-522.
[18] 陈俊,黄晓明. 集料分布特征对混合料疲劳性能的影响分析[J]. 建筑材料学报,2009,12(4):442-447.
CHEN Jun, HUANG Xiao-ming. Research on influence of distribution characteristics of aggregate on fatigue performance of asphalt mixture [J]. Journal of Building Materials, 2009, 12(4): 442-447.
[19] 王新飞. 沥青混合料细观结构的黏弹性力学及断裂力学数值分析[D]. 杭州:浙江大学,2011: 34-37.
WANG Xin-fei. Numerical analysis of viscoelastic and fracture behavior of asphalt concrete based on internal microstructure [D]. Hangzhou: Zhejiang University, 2011: 34-37.

[1] 谢颖, 黑亮声, 华邦杰, 张晓明. 电动汽车用永磁游标电机的设计与研究[J]. 浙江大学学报(工学版), 2018, 52(1): 184-191.
[2] 陈德, 韩森, 苏谦, 韩霄. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51(5): 896-903.
[3] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[4] 王岚,陈刚,邢永明, 胡江三. 沥青混合料变形特性[J]. 浙江大学学报(工学版), 2015, 49(9): 1805-1811.
[5] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2015, 49(1): 173-180.
[6] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2014, 48(8): 1-8.
[7] 谢新宇,黄杰卿,王文军,李金柱. 土体自重对宁波软土非线性大应变固结的影响[J]. 浙江大学学报(工学版), 2014, 48(5): 827-834.
[8] 叶肖伟,张小明,倪一清,黄启远,樊可清. 基于机器视觉技术的桥梁挠度测试方法[J]. 浙江大学学报(工学版), 2014, 48(5): 813-819.
[9] 杨兴旺,陶伟明. 磁致伸缩材料Terfenol-D非线性耦合有限元分析[J]. 浙江大学学报(工学版), 2014, 48(11): 2094-2100.
[10] 吴栋栋, 张文光, MERCERON Gilles, 罗云. 神经电极-脑组织界面微动环境力学特性仿真[J]. J4, 2013, 47(2): 256-260.
[11] 张忠苗,房凯,刘兴旺,林存刚. 特殊双排结构围护基坑周围地面沉降控制[J]. J4, 2012, 46(7): 1275-1280.
[12] 李正伟, 陶伟明. 非共面薄膜-基底结构多层封装及延展性分析[J]. J4, 2012, 46(6): 1143-1147.
[13] 王成立, 高慧, 卢建刚. 水轮发电机定子故障下的阻尼条损耗计算[J]. J4, 2012, 46(4): 770-776.
[14] 王新飞, 黄志义, 刘卓, 朱兴一, 徐伟. Delaunay三角网格的沥青混合料粗集料分布特性[J]. J4, 2012, 46(2): 263-268.
[15] 钟志贤, 祝长生. 横向裂纹多盘柔性转子系统的动力学特性[J]. J4, 2012, 46(10): 1839-1845.