Please wait a minute...
J4  2013, Vol. 47 Issue (7): 1140-1147    DOI: 10.3785/j.issn.1008-973X.2013.07.002
土木工程     
改进的水质服务水平与加氯费用优化分析
虞介泽,李聪,张土乔,毛欣炜
浙江大学 土木工程学系,浙江 杭州 310027   
Optimal analysis of improved water quality performance and rechlorination cost
YU Jie-ze, LI Cong, ZHANG Tu-qiao, MAO Xin-wei
Department of Civil Engineering,Zhejiang University,Hangzhou 310027,China
 全文: PDF 
摘要:

为了能够综合表征供水管网中余氯及消毒副产物三卤甲烷(THMs)对水质的影响,建立THMs中不同组分的服务水平表达式,采用平均值、标准差和连乘3种表达式建立关联余氯及THMs服务水平的水质服务水平表达式.为了优化管网二次加氯时的加氯费用,提出考虑加氯点建设费用和基于加氯质量浓度的次氯酸钠溶液消耗量的加氯费用表达式.采用Net3管网模拟余氯衰减和THMs生成,优化算法采用非支配排序遗传算法(NSGA-Ⅱ),将计算得到的Pareto前沿面进行对比.计算结果表明,加权平均表达式为关联余氯和THMs服务水平的最优方式.随着二次加氯点数量的增加,水质服务水平的最大值增加,较高水质服务水平时的加氯费用降低.管壁余氯衰减系数对Pareto前沿面的影响最大,其次为加氯点数量、基于余氯消耗的THMs生成比例系数和出厂水THMs质量浓度,出厂水最小余氯质量浓度的影响可以忽略.

关键词: 供水管网水质服务水平THM多目标优化NSGA-Ⅱ    
Abstract:

The expressions of service level about different composition of THMs were built in order to comprehensively describe the effect of residual chlorine and disinfection by-products trihalomethanes (THMs) on water quality in water distribution systems. The expression about water quality service level of residual chlorine and THMs service level was built with three expressions including average values, standard deviation and multiplication. In order to optimize the cost of rechlorination, an expression of chlorination cost was presented by considering construction cost of boosters and the sodium hypochlorite consumption based on initial chlorine concentration. Then an multi-objective model of water quality performance and rechlorination cost was presented. Net3 water distribution system was used to simulate chlorine decay and THMs formation. The non-dominated sorted genetic algorithm-Ⅱwas used to optimize the algorithm and Pareto fronts generated were compared. Results showed that the weighted average expression was the optimal way to correlate service level of chlorine and THMs. With the number of boosters increasing, the maximum value of service level of water quality was increased and the rechlorination cost under higher service level of water quality was decreased. Decay coefficients of chlorine wall had the most effect on Pareto frontier, then number of boosters, proportionality coefficient of THMs concentration in effluent and THMs formation based on chlorine consumption. The effect of minimum chlorine in effluent could be ignored.

Key words: water distribution system    water quality performance    THM;multi-objective optimization    NSGA-Ⅱ
出版日期: 2013-08-15
:  TU 991.3  
基金资助:

国家自然科学基金资助项目(51208455);浙江省自然科学基金资助项目(LY12E08017); 高等学校博士学科点专项科研基金资助项目(20110101120033).

通讯作者: 李聪,女,副教授.     E-mail: congil@zju.edu.cn
作者简介: 虞介泽(1985-), 男, 博士生, 从事管网水质的研究. E-mail: jzyu2005@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

虞介泽,李聪,张土乔,毛欣炜. 改进的水质服务水平与加氯费用优化分析[J]. J4, 2013, 47(7): 1140-1147.

YU Jie-ze, LI Cong, ZHANG Tu-qiao,MAO Xin-wei. Optimal analysis of improved water quality performance and rechlorination cost. J4, 2013, 47(7): 1140-1147.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.07.002        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I7/1140

[1] 张燕,张念卿.基于部分覆盖理论的供水管网二次加氯点选址[J].浙江大学学报:工学版,2011,45(4):695-707.
ZHANG Yan,ZHANG Nian-qing.Optimization of locations of booster chlorination stations in water distribution system based on theory of partial coverage [J].Journal of Zhejiang University: Engineering Science,2011,45(4):695-707.
[2] CHOWDHURY S,CHAMPAGNE P,MCLELLAN P J.Models for predicting disinfection byproducts (DBP) formation in drinking waters: a chronological review [J].Science of the Total Environment,2009,407(14):4189-4206.
[3] 赵志领,赵洪宾,高金良,等.给水管网中三卤甲烷数学模型研究[J].哈尔滨商业大学学报:自然科学版,2008,24(6):741-744.
ZHAO Zhi-ling,ZHAO Hong-bin,GAO Jin-liang,et al. Research on THMs formation kinetics in water network [J].Journal of Harbin University of Commerce: Natural Sciences Edition,2008,24(6):741-744.
[4] 李欣,张继良,王郁萍,等.配水管网水质变化的研究(Ⅲ)[J].哈尔滨建筑大学学报,2000,33(2):58-61.
LI Xin,ZHANG Ji-liang,WANG Yu-ping,et al.Studying of the THM in water distribution system [J].Journal of Harbin University of C. E. & Architecture,2000,33(2):5861.
[5] 田一梅,刘慧娜,王杨.配水管网中三卤甲烷的预测研究[J].供水技术,2007,1(1):35-38.
TIAN Yi-mei,LIU Hui-na,WANG Yang.Prediction of trichloromathane in water distribution networks [J].Water Technology,2007,1(1):35-38.
[6] CARRICO B,SINGER C.Impact of booster chlorination on chlorine decay and THM production:simulated analysis [J].Journal of Environmental Engineering, ASCE,2009,135(10):928-935.
[7] TAMMIMEN S, RAMOS H, COVAS D.Water supply system performance for different pipe materials part I:water quality analysis [J].Water Resources Management,2008,22(11):1579-1607.
[8] KING W D,MARRETT L D.Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada) [J].Cancer Causes and Control,1996,7(6):596-604.
[9] DO M T,BIRKETT N J,JOHNSON K C,et al.Chlorination disinfection by-products and pancreatic cancer risk [J].Environmental Health Perspectives,2005,113(4):418-424.
[10] 张念卿.配水管网二次加氯优化及水质风险度分析[D].杭州:浙江大学,2011.
ZHANG Nian-qing.Optimization of booster chlorination system and risk analysis of water quality in water distribution network [D].Hangzhou:Zhejiang University,2011.
[11] BROWN D,WEST J R,COURTIS B J,et al.Modeling THMs in water treatment and distribution systems [J]. Proceeding of the Institution of Civil Engineers: Water Management,2010,163(4):165-174.
[12] COURTIS B J,WEST J R,BRIDGEMAN J.Chlorine demand-based predictive modeling of THM formation in water distribution networks [J].Urban Water Journal,2009,6(6):407-415.
[13] LIU W,QI S.Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination [J]. Frontiers of Environmental Science and Engineering in China,2010,4(1):65-72.
[14] BOCCELLI D L,TRYBY M E,UBER J G,et al.Optimal scheduling of booster disinfection in water distribution systems [J].Journal of Water Resources Planning and Management,ASCE,1998,124(2):99-111.
[15] 黄鑫,高乃云,丁国际,等.溴酸根在紫外和氯消毒联用工艺中的形成[J].土木建筑与环境工程,2010,32(6):132-136.
HUANG Xin,GAO Nai-yun,DING Guo-ji, et al.Formation of bromate in UV/Cl2, UV/NH2Cl and UV/ClO2 combining processes [J].Journal of Civil, Architectural and Environmental Engineering,2010,32(6):132-136.
[16] 张土乔,王鸿翔,郭帅.给水管网水质模型管壁余氯衰减系数校正[J].浙江大学学报: 工学版,2008,42(11):1977-1982.
ZHANG Tu-qiao, WANG Hong-xiang, GUO Shuai.Chlorine wall decay coefficients calibration of water distribution quality model [J].Journal of Zhejiang University: Engineering Science,2008,42(11):1977-1982.
[17] 李寻,张土乔,翁风永,等.基于节点水龄的供水管网水质研究[J].中国给水排水,2009,25(19):103-105.
LI Xun,ZHANG Tu-qiao,WEN Feng-yong,et al.Study on water quality in water distribution system based on water age of nodes [J].China Water and Wastewater,2009,25(19):103-105.
[18] VISALAKSHI S,BASKAR S.Multiobjective decentralized congestion management using modified NSGA-Ⅱ [J].Arabian Journal for Science and Engineering,2011,36(5):827-840.
[19] SHEN H,MCBEAN E.Pareto optimality for sensor placements in a water distribution system [J].Journal of Water Resources Planning and Management,2011,137(3):243-248.
[20] 邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005:149-156.

[1] 余洋, 夏春和, 胡潇云. 采用混和路径攻击图的防御方案生成方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1745-1759.
[2] 李建丽, 丁丁, 李涛. 基于二次聚类的多目标混合云任务调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1233-1241.
[3] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[4] 徐哲, 熊晓锋, 洪嘉鸣, 何必仕, 陈云. 数据驱动的城市供水管网异常事件侦测方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2222-2231.
[5] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[6] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[7] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366.
[8] 过晓芳,王宇平,代才. 新的混合分解高维多目标进化算法[J]. 浙江大学学报(工学版), 2016, 50(7): 1313-1321.
[9] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[10] 李聪,赵敬国,杨玉龙,赵桃桃. 紫外线消毒对砂滤水中余氯及三卤甲烷的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[11] 杨辉华, 谢谱模, 张晓凤, 马巍, 刘振丙. 求解多目标优化问题的改进布谷鸟搜索算法[J]. 浙江大学学报(工学版), 2015, 49(8): 1600-1608.
[12] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.
[13] 何忠华,袁一星. 基于剩余能量熵的供水管网可靠性优化设计[J]. 浙江大学学报(工学版), 2014, 48(7): 1188-1194.
[14] 刘业峰,徐冠群,潘全科,柴天佑. 磁性材料成型烧结生产调度优化方法及应用[J]. J4, 2013, 47(9): 1517-1523.
[15] 程伟平, 赵丹丹, 许刚, 蒋建群1. 供水管网爆管水力学模型与爆管定位[J]. J4, 2013, 47(6): 1057-1062.