Please wait a minute...
J4  2013, Vol. 47 Issue (6): 1088-1096    DOI: 10.3785/j.issn.1008-973X.2013.06.022
土木工程     
降雨过程中滑体非饱和带的滞水量计算分析
王智磊1,3, 孙红月2, 尚岳全1, 赵权利1
1.浙江大学 建筑工程学院,浙江 杭州 310058;2.浙江大学 海洋科学与工程学系,浙江 杭州 310058; 3. 浙江省电力设计院,浙江 杭州 310012
Assessment for backwater amount in unsaturated zone in landslide in rainfall process
WANG Zhi-lei1,3, SUN Hong-yue2, SHANG Yue-quan1, ZHAO Quan-li1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058, China; 3. Zhejiang Electric Power Design Institute, Hangzhou 310012, China
 全文: PDF 
摘要:

为研究滑体中的非饱和带滞水在降雨补给潜水过程中的作用,提出降雨过程中非饱和带滞水的计算方法以及以非饱和带滞水为指标的降雨阈值评价方法.通过监测降雨量、坡体潜水位及排水结构的排水流量,建立统计模型来评估降雨产生的非饱和带滞水量.利用排水隧洞影响范围内的坡体模型和均匀渗流理论正坡浸润线分析了潜水位变化所对应的土体中潜水释水量,使潜水位通过量纲变换后与降雨量和排水流量量纲一致,从而进行三者的统计模型分析.利用坡体高度饱和条件下降雨过程的监测数据建立向量自回归模型,用于计算理论降雨量,得到低水位条件下降雨过程中产生的非饱和带滞水量.根据浙江省杭金衢高速公路K103滑坡的案例,采用三次暴雨过程中的降雨、排水隧洞排水流量与潜水位监测值对降雨过程中产生的非饱和带滞水量进行了计算,分析了非饱和带滞水量对降雨补给潜水过程所起的作用,结果表明:可以将当滞水量重量达到60 kN且地下水位达到0.6 m时作为指标来确定降雨阈值.

关键词: 排水隧洞地下水滑坡降雨向量自回归滞水量    
Abstract:

To analyze the effect of backwater in unsaturated zone in the process that rain fed the groundwater in landslide, the computing method for backwater amount in rain process and evaluation method for rainfall threshold with the index of backwater were presented. The backwater amount induced by rainfall was deduced from the statistical model which was based on the monitoring data containing rainfall, groundwater level in landslide and water discharge from drainage structure. To make dimensions consistency of the monitoring data from rainfall, water discharge and groundwater level for statistical analysis, a seepage field model of drainage tunnel was established. In this model, the groundwater level variation was related to water release quantity considering the line of seepage in positive slope in uniform flow theory. In the situation of highly saturated, a vector autoregression model was established based on the data from dimensional transformation of groundwater level, monitoring data of rainfall and water discharge in the rainfall process. It could compute theoretical rainfall intensity, so that the backwater amount in the situation of low groundwater level was deduced in the rainfall process. The monitoring data of rainfall, water discharge in drainage tunnel and groundwater level from three heavy rainfall processes in K103 landslide at the Hangzhou-Jinhua-Quzhou Highway were analyzed. The generated backwater amount was calculated and its effect in rainfall infiltration into groundwater was analyzed. It concluded that the rainfall threshold was that the gravity force of backwater amount reaching 60 kN and the groundwater level reached 0.6 m.

Key words: drainage tunnel    groundwater    landslide    rainfall    vector autoregression    backwater amount
出版日期: 2013-07-09
:  P 642.2  
基金资助:

国家自然科学基金资助项目(40972187);高等学校博士学科点专项科研基金资助项目(20100101110026);浙江省重点创新团队支持计划资助项目(2009R50050).

通讯作者: 孙红月,女,副教授.     E-mail: shy@zju.edu.cn
作者简介: 王智磊(1984—),男,博士生,从事边坡监测与稳定性分析研究.E-mail: rainmelodystyle@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王智磊, 孙红月, 尚岳全, 赵权利. 降雨过程中滑体非饱和带的滞水量计算分析[J]. J4, 2013, 47(6): 1088-1096.

WANG Zhi-lei, SUN Hong-yue, SHANG Yue-quan, ZHAO Quan-li. Assessment for backwater amount in unsaturated zone in landslide in rainfall process. J4, 2013, 47(6): 1088-1096.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.06.022        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I6/1088

[1] TOHARI A, NISHIGAKI M, KOMATSU M. Laboratory rainfall-induced slope failure with moisture content measurement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 575-587.

[2] MONTRASIO L, VALENTINO R. A model for triggering mechanisms of shallow landslides[J]. Natural Hazards and Earth System Sciences, 2008, 8(5): 1149-1159.

[3] RAHARDJO H, NIO A S, LEONG E C, et al. Effects of groundwater table position and soil properties on stability of slope during rainfall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(11): 1555-1564.

[4] ASCH T W J V, BUMA J, BEEK L P H V. A view on some hydrological triggering systems in landslides[J]. Geomorphology, 1999, 30(1-2): 25-32.

[5] 孙红月,尚岳全,申永江,等.破碎岩质边坡排水隧洞效果监测分析[J].岩石力学与工程学报,2008, 27(11): 2267-2271.

SUN Hong-yue, SHANG Yue-quan, SHEN Yong-jiang, et al. Monitoring and analysis of effects of drainage tunnel on crushed-rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2267-2271.

[6] CASCINI L, CALVELLO M, GRIMALDI G M. Groundwater modeling for the analysis of active slow-moving landslides[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1220-1230.

[7] TRAVIS Q B, SCHMEECKLE M W, SEBERT D M. Meta-analysis of 301 slope failure calculations. I: Database description[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 453-470.

[8] TERLIEN M T J. The determination of statistical and deterministic hydrological landslide-triggering thresholds [J]. Environmental Geology, 1998, 35(2-3): 124-130.

[9] SALAS J D, KIM H S, EYKHOLT R, et al. Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes[J]. Nonlinear Processes in Geophysics, 2005, 12(4): 557-567.

[10] COJEAN R, CAI Y J. Analysis and modeling of slope stability in the Three-Gorges dam reservoir (China): The case of Huangtupo landslide[C]∥ Geological Engineering Problems in Major Construction Projects. Chengdu: IAEG, 2009: 982-990.

[11] POWRIE W. Contributions to Géotechnique 1948-2008: Groundwater[J]. Geotechnique, 2008, 58(5): 435-439.

[12] GHIASSIAN H, GHAREH S. Stability of sandy slopes under seepage conditions[J]. Landslides, 2008, 5(4): 397-406.

[13] 刘鹤年.流体力学[M].北京:中国建筑工业出版社, 2004.

[14] IVERSON R M, MAJOR J J. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations[J]. Geological Society of America Bulletin, 1987, 99(4): 579-594.

[15] 高铁梅.计量经济分析方法与建模:EViews应用及实例[M].北京:清华大学出版社,2006: 249-254.


[16] 王智磊, 孙红月, 刘永莉, 等. 降雨与边坡地下水位关系的时间序列分析[J]. 浙江大学学报:工学版, 2011, 45(7): 1301-1307.

WANG Zhi-lei, SUN Hong-yue, LIU Yong-li, et al. Time series analysis about groundwater level in slope and rainfall[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(7): 1301-1307.

[17] 李佳,高广运,黄雪峰.非饱和原状黄土边坡浸水试验研究[J].岩石力学与工程学报, 2011, 30(5): 1043-1048.

LI Jia, GAO Guang-yue, HUANG Xue-feng. Experimental research on immersion for unsaturated intact loess slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1043-1048.

[1] 黄赠, 王锐, 赵宇, 魏振磊. 隐伏断层地震诱发滑坡易发性评价[J]. 浙江大学学报(工学版), 2017, 51(11): 2136-2143.
[2] 邱子义,韩同春,豆红强,李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 551-558.
[3] 张琳琳, 赵蕾, 杨柳. 管群间歇散热的土壤温度响应与恢复特性[J]. 浙江大学学报(工学版), 2016, 50(2): 299-305.
[4] 黄发明, 殷坤龙, 张桂荣, 唐志政, 张俊. 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报(工学版), 2015, 49(6): 1193-1200.
[5] 史致男, 冉启华, 吴秀山, 陈惠君. 不同降雨区域对泥沙侵蚀过程的影响史[J]. 浙江大学学报(工学版), 2014, 48(8): 1361-1369.
[6] 应宏伟,章丽莎,谢康和,黄大中. 坑外地下水位波动引起的基坑水土压力响应[J]. J4, 2014, 48(3): 492-497.
[7] 彭令,牛瑞卿,吴婷. 时间序列分析与支持向量机的滑坡位移预测[J]. J4, 2013, 47(9): 1672-1679.
[8] 冉启华,史致男,许月萍. 降雨移动方向对坡面侵蚀泥沙浓度的影响[J]. J4, 2013, 47(5): 803-811.
[9] 王子阳, 张仪萍, 战国会, 俞亚南. 有渗流时埋管换热器传热模型[J]. J4, 2012, 46(8): 1450-1456.
[10] 刘永莉,孙红月,于洋,詹伟,尚岳全. 基于BOTDR监测技术抗滑桩上滑坡推力确定[J]. J4, 2012, 46(5): 798-803.
[11] 韩同春,黄福明. 双层结构土质边坡降雨入渗过程及稳定性分析[J]. J4, 2012, 46(1): 39-45.
[12] 王智磊,孙红月,刘永莉,尚岳全. 降雨与边坡地下水位关系的时间序列分析[J]. J4, 2011, 45(7): 1301-1307.
[13] 李梅,金爱民,楼章华,刘启东,尚长健. 高邮凹陷真武地区地下水动力场与油气运聚[J]. J4, 2011, 45(3): 582-588.
[14] 许烨霜, 沈水龙, 马磊. 地下构筑物对地下水渗流的阻挡效应[J]. J4, 2010, 44(10): 1902-1906.
[15] 许月萍, 童杨斌, 富强, 等. 几种Copulas模拟不同历时降雨量的影响分析[J]. J4, 2009, 43(6): 1107-1111.