Please wait a minute...
J4  2013, Vol. 47 Issue (6): 1081-1087    DOI: 10.3785/j.issn.1008-973X.2013.06.021
土木工程     
设置非等截面TLCD高层建筑在风荷载作用下减振分析
钟振宇1,2, 楼文娟1
1.浙江大学 建筑工程学院, 浙江 杭州 310058 2.浙江工业职业技术学院 建筑工程学院,浙江 绍兴 312000
Vibration reduction of high-rise buildings with converted TLCD acted by wind load
ZHONG Zhen-yu1,2, LOU Wen-juan1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Faculty of Civil Engineering and Architecture, Zhejiang Industry Polytechnic College, Shaoxing 312000,China  
 全文: PDF 
摘要:

为了分析非等截面液柱式调谐阻尼器(TLCD)在高层建筑上对脉动风荷载减振的有效性,采用随机振动理论计算结构响应来获得分析数据.建立设有非等截面TLCD高层结构的运动方程,给出变截面TLCD阻尼等效线性化后的主结构传递函数封闭解,分析系统各参数变化对减振效果的影响,并进行优化分析.结果表明:水箱液体质量和结构一阶广义质量的比值越大,减振效果越好,横竖管的长度比也有同样规律|但随着水头损失系数和竖横管面积比的增长使减振效果先增后减.一般而言TLCD频率和主结构基频接近时能达到最优减振率.在实际应用中建议将TLCD安装在轻柔和小阻尼的结构上以获得理想的效果.

关键词: 高层建筑非等截面TLCD减振风荷载    
Abstract:

In order to analyze the vibration reduction availability of the converted tuned liquid column damper( TLCD) installed on high-rise buildings acted by fluctuating wind load, random vibration theory was used to calculate the structure response to get analytical data. The dynamic equations of high-rise building with converted TLCD were established, and the closed form solution of transfer function about the structure was obtained by linearization of the damping item of the converted TLCD. The parameters of the converted TLCD and the structure were analyzed and optimized for vibration reduction. The results show that the damping effect increases with the ratio of mass of liquid in tank and first order generalized mass of structure. The ratio of length between vertical pipe and horizontal pipe has the same trend. But the damping effect is changed from increasing to decreasing with the ratio of pipes’ section area and the head loss coefficient increasing. In general, the optimal solution can be obtained as the frequency of the TLCD is close to fundamental frequency of the structure. It is suggested to install converted TLCD on slender high-rise buildings with little inherent damping to reach perfect effect.

Key words: high-rise building    converted TLCD    vibration reduction    wind load
出版日期: 2013-07-09
:  TU 311.3  
基金资助:

 国家自然科学基金资助项目(51178424).

通讯作者: 楼文娟,女,教授,博导.     E-mail: louwj@zju.edu.cn
作者简介: 钟振宇(1970—),男,教授,从事结构风工程方面的研究.E-mail:sxzzy11@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.

ZHONG Zhen-yu, LOU Wen-juan. Vibration reduction of high-rise buildings with converted TLCD acted by wind load. J4, 2013, 47(6): 1081-1087.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.06.021        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I6/1081

[1] LI H N, YI T H, JING Q Y, et al. Wind-Induced vibration control of dalian international trade mansion by tuned liquid dampers[J]. Mathematical Problems in Engineering, 2012,2012: 1-21.

[2] SAKAI F, TAKAEDA S, TAMAKI T. Tuned liquid column damper-new type device for suppression of building vibration[C]∥Proceeinge International Conference on High-rise Building.Nanjing: [s.n.],1989: 926-931.

[3] WU J C. Experimental calibration and head loss prediction of tuned liquid column damper[J]. Tamkang Journal of Science and Engineering, 2005, 8(4): 319-325.

[4] GAO H,KWOK K C S, SAMALI B. Optimization of tuned liquid column dampers[J]. Engineering Structures, 1997, 19(6): 47486.

[5] YALLA S K, KAREEM A. Optimum absorber parameters for tuned liquid column dampers[J]. Journal of Structural Engineering, 2000, 126(8): 906-915.

[6] BALENDRA T, WANG C M, RAKESH G. Vibration control of various types of buildings using TLCD[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999,83(1-3): 197-208.

[7] REITERER M, ZIEGLER F. Combined seismic activation of a SDOF-building with a passive TLCD attached[C]∥13th World Conference on Earthquake Engineering. Vancouver, BC, Canada:[s.n.],2004: 1-15.

[8] DEBARMA R, CHAKRABORTY S, GHOSH S K. Optimum design of tuned liquid column dampers under stochastic earthquake load considering uncertain bounded system parameters [J]. International Journal of Mechanical Sciences, 2010, 52(10): 1385-1393.

[9] MIN K W, KIM H S, LEE S H, et al. Performance evaluation of tuned liquid column dampers for response control of a 76-story benchmark building[J]. Engineering Structures, 2005, 27(7): 1101-1112.

[10] 殷永炜,阎石,杨金贤.调频液体柱型阻尼器振动控制参数的再研究[J].沈阳建筑工程学院学报,1999, 15(4): 322-327.

YIN Yong-wei,YAN Shi,YANG Jin-xian. A further study on the parameter of vibration control of tuned liquid column dapm[J]Journal of Shenyang Architecture and Civil Engineering Institute,1999,15(4): 322-327.

[11] FARSHIDIANFAR A, OLIAZADEH P. Vibration control of super tall buildings by tuned liquid column damper [C]∥17th International Congress on Sound and Vibration. Cairo, Egypt:[s.n.],2010: 18.

[12] CHANG C H. Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion[J]. Wind & Structures , 2011, 14(5): 435-447.

[13] FARSHIDIANFAR A, OLIAZADEH P. Closed form optimal solution of a tuned liquid column damper responding to earthquake[J]. World Academy of Science, Engineering and Technology, 2009, 59: 159-164.

[14] SHUM K M, KWOK K C S, HITCHCOCK P A. Closed-Form optimum liquid column vibration absorber parameters for base-excited damped structures[J]. Advances in Structural Engineering, 2011, 14(3): 489-497.

[1] 谢恩献, 袁行飞, 陈冲. 台风作用下弦支网壳结构动力失效[J]. 浙江大学学报(工学版), 2017, 51(2): 238-244.
[2] 桂龙辉, 谢霁明, 林颖孜, 张鸿玮. 悬挑环形廊桥的气动弹性模型试验[J]. 浙江大学学报(工学版), 2017, 51(11): 2121-2129.
[3] 王磊, 梁枢果,王泽康,张正维. 超高层建筑横风向风振局部气动外形优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1239-1246.
[4] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[5] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.
[6] 王磊,梁枢果,邹良浩,汤怀强,王述良.  超高层建筑涡振过程中体系振动频率[J]. 浙江大学学报(工学版), 2014, 48(5): 805-812.
[7] 柯世堂, 王同光, 陈少林, 葛耀君. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报(工学版), 2014, 48(4): 686-692.
[8] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[9] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[10] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.
[11] 徐兵, 张军辉, 杨华勇, 叶绍干. 基于串联式轴向柱塞泵转位角降噪方法仿真[J]. J4, 2013, 47(1): 94-101.
[12] 袁佩,谢旭,申永刚. 考虑减振装置影响的拱桥吊杆张力测试方法及应用[J]. J4, 2012, 46(9): 1592-1598.
[13] 李一民, 郝志勇, 叶慧飞. 柴油机正时齿轮系动力学特性分析[J]. J4, 2012, 46(8): 1472-1477.
[14] 林巍, 楼文娟, 申屠团兵, 黄铭枫. 高层建筑脉动风压的非高斯峰值因子方法[J]. J4, 2012, 46(4): 691-697.
[15] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.