Please wait a minute...
J4  2013, Vol. 47 Issue (4): 720-727    DOI: 10.3785/j.issn.1008-973X.2013.04.024
电气与机械工程     
微/纳传动平台的位移耦合分析
林超, 陶友淘, 程凯, 俞松松, 刘垒
重庆大学 机械传动国家重点实验室,重庆 400030
Displacement coupling analysis of micro/nano transmission platform
LIN Chao, TAO You-tao, CHENG Kai, YU Song-song, LIU Lei
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
 全文: PDF 
摘要:

根据机械设计、机械原理、有限元法及线性分析理论,建立微/纳传动平台的有限元模型,推导该平台的位移耦合计算公式,得到该平台沿各方向运动的解耦方程.结合耦合分析图,分析微/纳传动平台多尺度的位移耦合影响,获得该平台沿X、Y、Z轴移动以及绕X、Y轴转动的位移耦合规律,其中沿Z向运动引起的位移耦合最小,定位精度最高;沿X、Y向运动引起的位移耦合最大,对位移耦合影响较大的运动分支进行位移补偿.通过搭建的实验平台进行测试,将实验结果与有限元仿真和理论计算结果进行对比分析,结果基本一致,验证了该平台位移耦合分析方法的正确性.

关键词: 微/纳传动平台柔性板簧压电陶瓷位移耦合比有限元分析(FEA)    
Abstract:

The finite element model of micro/nano transmission platform was established according to mechanical design, mechanical principles, finite element method and linear analysis theories. The calculation formulas for displacement coupling of the platform were derived, and the decoupling equations along each moving directions were acquired. The multi-scale displacement coupling effect of micro/nano transmission platform was analyzed combined with coupling analysis diagrams. Then the displacement coupling regulations of moving along X, Y, Z axes and rotating around X, Y axes were acquired respectively. The caused coupling displacement along Z axis is minimum and the platform has the highest position accuracy. The responsive coupling displacements along X and Y axis are maximum. The displacement compensation was performed on the movement directions which have great coupling displacement. The experimental results accorded well with the finite element simulation and theoretical results through constructing experimental platform and testing, which verified the validity of the method.

Key words: micro/nano transmission platform    leaf spring    piezoelectric ceramics    displacement coupling ratio    finite element analysis (FEA)
出版日期: 2013-05-07
:  TH 139  
基金资助:

机械传动国家重点实验室科研业务费资助项目(SKLMT-ZZKT-2012MS05)|重庆大学机械传动国家重点实验室2008年度开放基金资助项目(SKLMT-KFKT-200806).

作者简介: 林超(1958—),男,教授,博导,从事机械设计计算机辅助工程、微纳米传动系统的设计与分析、新型齿轮传动、精密传动等研究.E-mail: linchao@cqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林超, 陶友淘, 程凯, 俞松松, 刘垒. 微/纳传动平台的位移耦合分析[J]. J4, 2013, 47(4): 720-727.

LIN Chao, TAO You-tao, CHENG Kai, YU Song-song, LIU Lei. Displacement coupling analysis of micro/nano transmission platform. J4, 2013, 47(4): 720-727.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.04.024        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I4/720

[1] TANG X Y, CHEN I M, LI Q, et al. Design and nonlinear modeling of a large-displacement XYZ flexure parallel mechanism with decoupled kinematic structure [J]. Scientific Instruments, 2006, 77 (115101): 1-11.

[2] WANG H, ZHANG X M. Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage [J]. Mechanism and Machine Theory, 2008, 43(4): 400-410.

[3] DONG W, SUN L N, DU Z J, et al. Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints [J]. Precision Engineering, 2008, 32(3): 222-231.

[4] DONG J Y, YAO Q, PLACID M F, et al. Dynamics,control and performance analysis of a novel parallel-kinematics mechanism for integrated,multi-axis nano-positioning [J]. Precision Engineering. 2008, 32(1): 20-33.

[5] 魏强,张玉林,宋会英,等.扫描隧道显微镜精密工作台及其控制技术研究[J].中国机械工程,2007,18(2): 193-196.

WEI Qiang, ZHANG Yu-lin, SONG Hui-ying, et al. Research on precision stage and control technology of scanning tunneling microscope [J]. China Mechanical Engineering, 2007,18(2): 193-196.

[6] 马立,荣伟彬,孙立宁,等.面向光学精密装配的微操作机器人[J],机械工程学报,2009,45(2): 280-287.

MA Li, RONG Wei-bin, SUN Li-ning, et al. Micro operation robot for optical precise assembly [J]. Journal of Mechanical Engineering, 2009, 45(2): 280-287.

[7] 林超,俞松松,程凯,等.大行程5-DOF微纳传动平台的设计及特性分析[J].中国机械工程,2010, 21(22): 2679-2684.

LIN Chao, YU Song-song, CHENG Kai, et al. Design and analysis of a long-displacement 5-DOF nano-transmission platform [J]. China Mechanical Engineering, 2010, 21(22): 2679-2684.

[8] RYU J W, LEE S Q, GWEON D G, et al. Inverse kinematics modeling of a coupled flexure hinge mechanism [J]. Mechatronics, 1999, 9(6): 657-674.

[9] LAI Lei-jie, GU Guo-ying, LI Peng-zhi, et al. Design of a decoupled 2-DOF translational parallel micro-positioning stage [C]∥ Proceedings of the International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 5070-5075.

[10] LI Yang-min, XU Qing-song. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nano manipulation [C]∥ IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 265-279.

[11] XIAO Xiao-hui, PAN Li-zhi, LIU Pin-kuan, et al. Comprehensive optimization of an XY nano positioning stage with flexure-hinges and lever mechanisms [C]∥ Proceedings of the Nanotechnology Materials and Devices Conference (NMDC). Monterey: IEEE, 2010: 368-373.

[12] TAYLAR J B, TU J F. Precision X-Y microstage with maneuverable kinematic coupling mechanism [J]. Precision Engineering, 1999, 18(2/3): 85-94.

[13] 王华,张宪民,欧阳高飞.平面三自由度微动工作台的输入耦合分析[J].中国机械工程,2005,16(5): 377-380.

WANG Hua, ZHANG Xian-min, OUYANG Gao-fei. Coupled input analysis of a planar 3-DOF micro-positioning stage [J]. China Mechanical Engineering, 2005, 16(5): 377-380.

[14] HER I, CHANG J C. A linear scheme for the displacement analysis of micro positioning stages with flexure hinges [J]. Mechanical Design, 1994, 116(9): 770-776.

[15] BATHE K J, WILSON E L. Numerical methods in finite element analysis [M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1976: 31-43.

[1] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[2] 江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 2017, 51(4): 825-833.
[3] 毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 2016, 50(1): 102-110.
[4] 戴公连, 郑鹏飞, 闫斌, 肖祥南. 日照作用下箱梁桥上无缝线路纵向力[J]. J4, 2013, 47(4): 609-614.
[5] 唐良琴, 刘东燕, 聂德新. 向家坝河床坝基软弱夹层强度参数取值[J]. J4, 2013, 47(1): 162-168.
[6] 林超, 俞松松, 程凯, 崔新辉, 陶友淘, 王静超. 微/纳米定位平台的动态特性分析与试验[J]. J4, 2012, 46(8): 1375-1381.
[7] 林超, 俞松松, 陶桂宝, 程凯, 陶友淘, 宿新红. 微/纳米定位平台的桥式机构静、动态优化设计[J]. J4, 2012, 46(6): 1067-1073.
[8] 李蔚, 张浩权, 钱泱, 蒋志强, 盛德仁. 水轮机定子铁芯冲片外移事故有限元分析[J]. J4, 2010, 44(5): 1032-1037.
[9] 黄明星, 叶云岳, 范承志. 复式永磁同步电机的工作特性分析与应用[J]. J4, 2010, 44(5): 1019-1024.
[10] 鹿存跃,魏燕定,郭吉丰,等. 双振子自走型直线超声电机的研究[J]. J4, 2009, 43(8): 1469-1472.
[11] 马利 陶伟明 郭乙木 郑津洋. SPH耦合有限元方法的水射流弹塑性碰撞模拟[J]. J4, 2008, 42(2): 259-263.
[12] 陈海初 王宣银 张蕊华 谭冲 张阳. 压电陶瓷驱动精密流量阀的设计与建模[J]. J4, 2008, 42(11): 1936-1939.
[13] 陈海初 孙立宁 王宣银. 全方位精密微小型移动机器人的运动分析[J]. J4, 2006, 40(4): 577-580.