Please wait a minute...
J4  2013, Vol. 47 Issue (4): 575-580    DOI: 10.3785/j.issn.1008-973X.2013.04.002
土木工程     
基于电阻率法研究混凝土渗透性能演变规律
陈军, 金南国, 金贤玉, 洪天从
浙江大学 土木工程学系,浙江 杭州 310058
Permeability evolution of concrete by electrical resistivity measurement
CHEN Jun, JIN Nan-guo, JIN Xian-yu, HONG Tian-cong
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF 
摘要:

将非接触式电阻率测定仪设计成新型渗透试验装置,研究混凝土渗透性能随龄期的变化规律.导电溶液贯通混凝土试件后电阻率将发生突变,利用试验装置可以直观地得到混凝土渗透完结时间.对水灰质量比为0.60、0.53、0.45,龄期为12 h、18 h、1 d、2 d、3 d、7 d、14 d、28 d的混凝土分别进行新型渗透试验,分析溶液渗透速率指标的时变规律,结合压汞法孔结构测试结果进行分析讨论.试验结果发现,在3 d之前,混凝土的渗透性急剧下降,对混凝土抗渗性不利的孔隙率显著减小;3 d之后,混凝土的渗透性先小幅回升,而后缓慢下降,最后趋于稳定.0~3 d是混凝土渗透性能较大、氯离子侵蚀的危险期.混凝土的凝胶特性使其在毛细孔连通路径封堵之后仍然保持较稳定的可渗透性.

关键词: 混凝土渗透性电阻率法溶液渗透速率孔结构    
Abstract:

A new permeability experimental device based on the NC-ERM was designed and applied to study the permeability evolution of concrete. The device showed high sensibility in detecting the percolation threshold of the penetrating solution. Thus, the critical percolating time can be easily obtained. The permeation rate of concretes with various water cement ratios was tested at the ages of 12 h, 18 h, 1 d, 2 d, 3 d, 7 d, 14 d, and 28 d, with their porosity and pore size distribution measured by MIP simultaneously. Results showed that the permeation rate of concrete slumped in the first three days, corresponding well with the notably decreasing of harmful porosity during this period|the permeability of concrete would recover slightly after 3 d, then declined in a slow rate, and leveled off finally. According to the experimental results, 0-3 d can be marked and defined as the vulnerable period for chloride ion ingression in view of the significantly greater permeability during this stage. The fact that concrete remained steadily permeable after depercolation of capillary porosity revealed the intriguing connected property of gel pores inside concrete.

Key words: concrete    permeability    electrical resistivity measurement    solution permeation rate    pore structure
出版日期: 2013-05-07
:  TU 528  
基金资助:

国家“863”高技术研究发展计划资助项目(2012AA050903);国家自然科学基金资助项目(50838008, 51178413).

通讯作者: 金贤玉,女,教授.     E-mail: xianyu@zju.edu.cn
作者简介: 陈军(1988—),男,博士生,从事混凝土结构耐久性的研究. E-mail: chenchangejun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈军, 金南国, 金贤玉, 洪天从. 基于电阻率法研究混凝土渗透性能演变规律[J]. J4, 2013, 47(4): 575-580.

CHEN Jun, JIN Nan-guo, JIN Xian-yu, HONG Tian-cong. Permeability evolution of concrete by electrical resistivity measurement. J4, 2013, 47(4): 575-580.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.04.002        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I4/575

[1] CUI L, CAHYADI J H. Permeability and pore structure of OPC paste [J]. Cement and Concrete Research, 2001, 31(2): 277-282.

[2] 冯乃谦,刑锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社,2009: 114-236.

[3] ELDIEB A S, HOOTON R D. Water-permeability measurement of high performance concrete using a high-pressure triaxial cell [J]. Cement and Concrete Research, 1995, 25(6): 1199-1208.

[4] POWERS T C, COPELAND L E, MANN H M. Capillary continuity or discontinuity in cement paste [J]. Portland Cement Association R & D Lab Bulletin, 1959, 1(2): 38-48.

[5] SCHERER G W, VALENZA J J, SIMMONS G. New methods to measure liquid permeability in porous materials [J]. Cement and Concrete Research, 2007, 37(3): 386-397.

[6] LI Z, LI W. Non-contact method for resistivity measurement of concrete specimen: US, 6639401 [P]. 20031028.

[7] GALLE C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-, and freeze-drying [J]. Cement and Concrete Research, 2001, 31(10): 1467-1477.

[8] DEJONG M J, ULM F J. The nanogranular behavior of C-S-H at elevated temperatures (up to 700oC) [J]. Cement and Concrete Research, 2007, 37(1): 1-12.

[9] JENSEN O M, HANSEN P F, LACHOWSKI E E, et al. Clinker mineral hydration at reduced relative humidities [J]. Cement and Concrete Research, 1999, 29(9): 1505-1512.

[10] BAROGHEL-BOUNY V, MOUNANGA P, KHELIDJ A. Autogenous deformations of cement pastes Part II. W/C effects, micro-macro correlations, and threshold values [J]. Cement and Concrete Research, 2006, 36(1): 123-136.

[11] FLATT R J, SCHERER G W, BULLARD J W. Why alite stops hydrating below 80% relative humidity [J]. Cement and Concrete Research, 2011, 41(9): 987-992.

[12] ZHANG J. Microstructure study of cementitious materials using resistivity measurement [D]. Hongkong: Hong Kong University of Science and Technology, 2008: 103-130.

[13] 吴中伟.高性能混凝土[M].北京:中国铁道出版社,1999: 22-25.

[14] CONSTANTINIDES G, ULM F J. The nanogranular nature of C-S-H [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(1): 64-90.

[15] GMIRA A, ZABAT M, PELLENQ R J M, et al. Microscopic physical basis of the poromechanical behavior of cement-based materials [J]. Materials and Structures, 2004, 37(1): 3-14.

[16] JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-Ⅱ [J]. Cement and Concrete Research, 2008, 38(3): 275-289.

[17] BENTZ D P, GARBOCZI E J, Percolation of phases in a three-dimensional cement paste microstructural model [J]. Cement and Concrete Research, 1991, 21(3): 325-344.

[18] POWERS T C. Structure and physical properties of hardened Portland cement paste [J]. Journal of the American Ceramic Society, 1985, 41(1): 1-6.

[19] SANT G, BENTZ D P, WEISS J. Capillary porosity depercolation in cement-based materials: measurement techniques and factors which influence their interpretation [J]. Cement and Concrete Research, 2011, 41(8): 854-864.

[1] 蔡自伟, 陆洲导, 李凌志, 苏磊, 林闯. 梁侧锚固钢板加固混凝土梁受剪性能试验[J]. 浙江大学学报(工学版), 2018, 52(1): 82-88.
[2] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[3] 余翔, 孔宪京, 邹德高. 混凝土防渗墙变形与应力分布特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1704-1711.
[4] 李奔奔, 江佳斐, 豆香香, 肖平成. 新型被动式真三轴试验装置[J]. 浙江大学学报(工学版), 2017, 51(9): 1688-1694.
[5] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[6] 万晨光, 申爱琴, 郭寅川. 桥面铺装调平层与沥青面层层间剪切行为[J]. 浙江大学学报(工学版), 2017, 51(7): 1355-1360.
[7] 徐铨彪, 陈刚, 贺景峰, 龚顺风, 肖志斌. 复合配筋混凝土预制方桩接头抗弯性能试验[J]. 浙江大学学报(工学版), 2017, 51(7): 1300-1308.
[8] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[9] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[10] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[11] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[12] 孟嘉辉, 廖祖维, 蒋斌波, 黄正梁, 王靖岱, 阳永荣. 水蒸气处理对ZSM-5催化剂及甲醇制丙烯反应的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2451-2458.
[13] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.
[14] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[15] 董运宏, 淳庆, 许先宝, 王建国, 黄珊. 民国建筑锈胀开裂时的临界锈蚀深度[J]. 浙江大学学报(工学版), 2017, 51(1): 27-37.