Please wait a minute...
J4  2013, Vol. 47 Issue (4): 565-574    DOI: 10.3785/j.issn.1008-973X.2013.04.001
土木工程     
开裂混凝土中钢筋加速锈蚀方法适用性
王雪松, 金贤玉, 田野, 李蓓, 金南国
浙江大学 建筑工程学院,浙江 杭州 310058
Applicability of accelerated corrosion method of steel bars in cracked concrete structure
WANG Xue-song, JIN Xian-yu, TIAN Ye, LI Bei, JIN Nan-guo
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF 
摘要:

采用4种不同的外加电流加速锈蚀方法对荷载作用下混凝土中钢筋的锈蚀过程进行模拟,分析锈蚀后钢筋表面形态特征及锈蚀产物的形貌和成分.试验结果表明:预设辅助电极外加电流加速锈蚀方法,几乎不存在溢锈现象,锈胀力发展快,因此锈胀裂缝发展迅速;采用半浸泡外加电流加速锈蚀方法,锈胀裂缝发展速度次之,存在溢锈现象,如不及时清除会影响氧气的扩散性能,从而影响锈胀力的发展速度;采用贴面外加电流加速锈蚀方法,锈胀力发展速度较慢;全浸泡外加电流加速锈蚀方法,由于锈蚀过程中锈蚀产物不断被水带走,导致锈胀力发展最慢,通电时间最长,锈胀裂缝发展最慢,无法达到预期裂缝宽度.加速锈蚀方法的理论锈蚀质量高于实际试验锈蚀质量.

关键词: 混凝土结构钢筋电化学加速锈蚀方法    
Abstract:

Four electrifying corrosion methods were applied to simulate the corrosion process of reinforcement in concrete under loads. The surface characteristics of corroded reinforcement were analyzed together with the microstructure and element composition of corrosion products. Experimental results demonstrate that very little excessive rust can be found from the reinforcement in the concrete beam corroded with the embedded auxiliary electrode method, and the expansion force generates very fast which leading to a rapid development of the corrosion cracks. The corrosion rate of reinforcement corroded with half soaking method ranks second, but the excessive rust generates on the surface of corroded reinforcement may affect the oxygen diffusion in concrete, and thereby influence the corrosion process. The expansion force generates very slowly in the reinforced concrete beam corroded with the surface coating method. As the corrosion products of the reinforcement corroded with soaking method are continuously taken away by water, the expansion force develops the most slowly, the electrifying lasts for the longest time, and the crack width can’t reach the anticipated value as the corrosion crack expands the most slowly. The theoretical corrosion mass in each accelerated corrosion method is higher than the experimental corrosion mass.

Key words: concrete structure    steel rebar    electrochemistry accelerated corrosion method
出版日期: 2013-05-07
:  TU 528.01  
基金资助:

国家“863”高技术研究发展计划资助项目(2012AA050903);国家自然科学基金资助项目(50838008,51178413);铁道部科技研究开发计划资助项目(J2011G004).

通讯作者: 田野,男,讲师.     E-mail: cetianye@zju.edu.cn
作者简介: 王雪松(1988—),男,硕士生,从事混凝土耐久性研究.E-mail: 308005054@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王雪松, 金贤玉, 田野, 李蓓, 金南国. 开裂混凝土中钢筋加速锈蚀方法适用性[J]. J4, 2013, 47(4): 565-574.

WANG Xue-song, JIN Xian-yu, TIAN Ye, LI Bei, JIN Nan-guo. Applicability of accelerated corrosion method of steel bars in cracked concrete structure. J4, 2013, 47(4): 565-574.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.04.001        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I4/565

[1] 金伟良,袁迎曙,卫军,等.氯盐环境下混凝土结构耐久性理论与设计方法[M].北京:科学出版社,2011:  1-17.

[2] UOMOTO T, TSUJI K, KAKIZAWA T. Deterioration mechanism of concrete structures caused by corrosion of reinforcing bars [J]. Transactions of Japan Concrete Institute, 1984, 6: 163-146.

[3] AL-SULAIMANI G, KALEEMULLAH M, BASU-NBUL I A, et al. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members [J]. ACI Structure
Journal, 1990, 87(2): 220-231.

[4] ALMUSALLAM A, AL-GAHTANI A, ABDURRAUFA-ZIZ, et al. Effect of reinforcement corrosion on exural behavior of concrete slabs [J].Journal of Materials in Civil Engineering, 1996a, 8(3): 123-127.

[5] 夏晋. 锈蚀钢筋混凝土结构力学性能研究[D].杭州: 浙江大学,2010.

XIA Jin. Mechanical behavior of the corrosion damaged reinforced-concrete structure [D]. Hangzhou: Zhejiang University, 2010.

[6] MAADDAWY T, SOUDKI K. Effective of impressed current technique to simulate corrosion of steel reinforcement in concrete [J]. Journal of Materials in Civil Engineering, 2003, 15(1): 41-47.

[7] HAO Yu-xi, YU Jiang, HU Bing-yan, et al. Crack shape and rust distribution in corrosion-induced cracking concrete [J]. Corrosion Science, 2012, 55: 385-393.

[8] ZHAO Yu-xi, REN Hai-yang, DAI Hong, et al. Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis [J]. Corrosion Science, 2011, 53(5): 1646-1658.

[9] CAR S, NGUYEN Q, L′HOSTIS V, et al. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar [J]. Cement and Concrete Research, 2008, 38(8/9): 1079-1091.

[10] 干伟忠,金伟良,高明赞.混凝土中钢筋加速锈蚀试验适用性研究[J].建筑结构学报, 2011, 2(2): 41-47.

GAN Wei-zhong, JIN Wei-liang, GAO Ming-zan. Applicability study on accelerated corrosion methods of steel bars in concrete structure [J]. Journal of Building Structures, 2011, 2(2): 41-47.

[11] YALCINER H, EREN O, SENSOY S. An experimental study in the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level [J]. Cement and Concrete Research, 2012, 5(42): 643-655.

[1] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[2] 蔡自伟, 陆洲导, 李凌志, 苏磊, 林闯. 梁侧锚固钢板加固混凝土梁受剪性能试验[J]. 浙江大学学报(工学版), 2018, 52(1): 82-88.
[3] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687.
[4] 金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根. 基于动态压磁的锈蚀钢筋疲劳特性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(2): 225-230.
[5] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[6] 董运宏, 淳庆, 许先宝, 王建国, 黄珊. 民国建筑锈胀开裂时的临界锈蚀深度[J]. 浙江大学学报(工学版), 2017, 51(1): 27-37.
[7] 童晶, 金贤玉, 田野, 金南国. 基于DIC技术的锈蚀钢筋混凝土表面开裂[J]. 浙江大学学报(工学版), 2015, 49(2): 193-199.
[8] 李强, 金贤玉. 箍筋锈蚀对轴压混凝土短柱承载力的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1929-1938.
[9] 金伟良,黄楠,许晨,毛江鸿. 双向电渗对钢筋混凝土修复效果的试验研究——保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报(工学版), 2014, 48(9): 1586-1594.
[10] 苏亮,索靖,宋明亮. 钢筋砼框架结构易损性评估的参数敏感性分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1384-1390.
[11] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[12] 卫军, 张萌, 杨曼娟, 董荣珍. 混凝土结构道路护栏设计计算方法[J]. J4, 2014, 48(2): 249-253.
[13] 孙晓燕, 王龙威, 王海龙, 张治成. 基于模型试验的FRP加固钢筋砼梁抗弯疲劳性能预测[J]. 浙江大学学报(工学版), 2014, 48(12): 2230-2237.
[14] 蒋遨宇,陈驹,金伟良. HRB500级钢筋混凝土梁受弯性能分析[J]. J4, 2013, 47(9): 1566-1572.
[15] 杨涛,邹道勤. 基于XFEM的钢筋混凝土梁开裂数值模[J]. J4, 2013, 47(3): 495-501.