Please wait a minute...
J4  2013, Vol. 47 Issue (3): 449-455    DOI: 10.3785/j.issn.1008-973X.2013.03.008
土木工程     
混凝土中胺类有机物——胍对钢筋氯盐腐蚀的作用
章思颖1, 金伟良1,2, 许晨1
1.浙江大学 结构工程研究所,浙江 杭州 310058;2.浙江大学 宁波理工学院,浙江 宁波 315100
Effectiveness of an amine-based inhibitor—guanidine for
steel in chloride-contaminated concrete
ZHANG Si-ying1, JIN Wei-liang1,2, XU Chen1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058,China;
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100 , China
 全文: PDF 
摘要:

为了考察胺类有机物在氯盐环境中的阻锈能力,采用动电位极化测量、电化学阻抗谱法(EIS)和弱极化法,结合氯离子浓度、阻锈剂浓度、溶液pH值3个影响因素,研究胺类有机物——胍在有氯盐存在的模拟混凝土孔隙液中对钢筋锈蚀行为的影响和对已锈蚀钢筋的延缓作用.试验研究表明:在模拟混凝土孔隙液的pH值为12.50,且溶液中胍的浓度与氯离子浓度相近时,胍可在钢筋表面形成保护被膜,有效地阻止和延缓了钢筋锈蚀的发生,显著降低了已锈蚀钢筋的锈蚀速率,甚至使其停止锈蚀.在相同浓度下,当模拟混凝土孔隙液的pH值从12.50降至10.50时,胍的阻锈能力下降,表明胍在氯盐环境中有较好的阻锈能力.

关键词: 胺类有机物钢筋氯盐锈蚀阻锈    
Abstract:

Amines and alkanolamines are the basic components of corrosion inhibitors for electrochemical injection. This work experimentally investigated the effectiveness of an amine-based inhibitor, guanidine, in preventing the chloride-induced corrosion of carbon steel or halting the corrosion process of precorroded steel in chloride-contaminated simulated concrete pore solutions. Considering the pH value of the solution, guanidine concentration and chloride ion concentration,the corrosion behaviors of steel in different solutions were studied by means of electrochemical potentiodynamic polarization test, weak polarization method, electrochemical impedance spectroscopy (EIS). The results indicated that, in term of pH=12.50, when the concentration ratio of guanidine and Cl- was close to 1.0, guanidine could form a protective film on the surface of carbon steel,thus effectively delayed the start of corrosion and reduced the corrosion rate of precorroded steel, even halted the corrosion process. When the pH value fell to 1050, compared with the result of pH=12.50, the effectiveness of guanidine descended. Hence amines-based inhibitor, guanidine can be an effective corrosion inhibitor for electrochemical injection in chloride-polluted concrete.

Key words: amines    guanidine    steel    chloride    corrosion    inhibitor
出版日期: 2013-04-10
:  TU 375  
基金资助:

 国家科技部资助项目(S2011Z10100);国家自然科学基金重大国际合作资助项目(50920105806).

通讯作者: 金伟良,男,教授,博导.     E-mail: jinwl@zju.edu.cn
作者简介: 章思颖(1988-),女,硕士生,从事混凝土结构耐久性方面研究. E-mail:zhangsiying_zsy@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

章思颖, 金伟良, 许晨. 混凝土中胺类有机物——胍对钢筋氯盐腐蚀的作用[J]. J4, 2013, 47(3): 449-455.

ZHANG Si-ying, JIN Wei-liang, XU Chen. Effectiveness of an amine-based inhibitor—guanidine for
steel in chloride-contaminated concrete. J4, 2013, 47(3): 449-455.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.03.008        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I3/449

[1] 王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展[J].振动与冲击,2004,23(4):99-102.
Wang Shu-xin, JIANG Zhe. Present Developing Situation and Research Advances in the Field of Structural Damage Detection [J]. Journal of Vibration and Shock, 2004, 23(4):99-102.
[2] 郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击,2002,21(2):1-10.
ZHENG Dong-liang, LI Zhong-fu, HUA Hong-xing. A summary review of structural initial damage identification methods [J]. Journal of Vibration and Shock, 2002, 21(2):1-10.
[3] 张敬芬,赵德有.工程结构裂纹损伤振动诊断的发展现状和展望[J].振动与冲击,2002,21(4):22-26.
ZHANG Jing-fen, ZHAO De-you. Summary review of vibration-based crack diagnosis technique for engingeering structures [J]. Journal of Vibration and Shock, 2002, 21(4):22-26.
[4] 马宏伟,杨桂通.结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4):513-527.
MA Hong-wei, YANG Gui-tong. Basic methods for damage detection based on structural vibration [J]. Journal of Taiyuan University of Technology, 1999,29(4):513-527.
[5] 刘国华,吴志根.引入信息熵理论的砼结构损伤动力识别新思路[J].振动与冲击,2011,30(6):162-171.
LIU Guo-hua, WU Zhi-gen. New thought on dynamic identification technology for damage detection of RC structures by introducing information entropy theory [J]. Journal of Vibration and Shock, 2011, 30(6):162-171.
[6] PINCUS S M. Approximate Entropy as a measure of system complexity[J].Proceedings of the National Academy of Sciences of the United States of America,1991,88(6):22972301.
[7] PINCUS S M, KEEFE D L. Quantification of hormone pulsatility via an approximate entropy algorithm[J]. American Journal of Physiology, 1992, 262(5):E741-E754.
[8] PINCUS S M. Assessing serial irregularity and its Implications for health[J]. Annals of the New York Academy of Sciences, 2001, 954(1):245-267.
[9] CANCIO L C, BATCHINSKY A I, SALINAS J, et al. Heart-rate complexity for prediction of prehospital lifesaving interventions in trauma patients[J]. Journal of Trauma-Injury Infection & Critical Care, 2008, 65(4):813-819.
[10] ORMELLESE M, LAZZARI L, GOIDANICH S, et al. A study of organic substances as inhibitors for chlorideinduced corrosion in concrete [J]. Corrosion Science, 2009, 51(12): 2959-2968.
[11] GB/T 24196—2009/ISO 17475:2005, 金属和合金的腐蚀 电化学试验方法 恒电位和动电位极化测量导则[S]. 北京: 中国标准出版社, 2009.
GB/T 24196—2009/ISO 17475:2005, Corrosion of metals and alloys—Electrochemical test methods—Guidelines for conduction potentiostatic and potentiodynamic polarization measurements [S].Beijing: Standards Press of China, 2009.
[12] 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002: 26-51.
[13] 许晨, 金伟良, 王传坤. 混凝土中钢筋脱钝的电化学弱极化判别方法[J]. 交通科学与工程, 2009, 25 (4): 31-36.
XU Chen, JIN Weiliang, WANG Chuangkun. Distinguishing the depassivation of rebar in concrete with weak polarization method [J]. Journal of Transport Science and Engineering, 2009, 25 (4): 31-36.
[14] ASTM G 102. Standard practice for calculation of corrosion rates and related information from electrochemical Measurements [S]. west conshohocken, PA:ASTM Intemational, 1999.

[1] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[2] 蔡自伟, 陆洲导, 李凌志, 苏磊, 林闯. 梁侧锚固钢板加固混凝土梁受剪性能试验[J]. 浙江大学学报(工学版), 2018, 52(1): 82-88.
[3] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687.
[4] 金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根. 基于动态压磁的锈蚀钢筋疲劳特性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(2): 225-230.
[5] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[6] 董运宏, 淳庆, 许先宝, 王建国, 黄珊. 民国建筑锈胀开裂时的临界锈蚀深度[J]. 浙江大学学报(工学版), 2017, 51(1): 27-37.
[7] 许晨, 金伟良, 黄楠, 吴航通, 毛江鸿, 夏晋. 双向电渗对钢筋混凝土的修复效果实验——保护层表面强度变化规律[J]. 浙江大学学报(工学版), 2015, 49(6): 1128-1138.
[8] 童晶, 金贤玉, 田野, 金南国. 基于DIC技术的锈蚀钢筋混凝土表面开裂[J]. 浙江大学学报(工学版), 2015, 49(2): 193-199.
[9] 李强, 金贤玉. 箍筋锈蚀对轴压混凝土短柱承载力的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1929-1938.
[10] 金伟良,黄楠,许晨,毛江鸿. 双向电渗对钢筋混凝土修复效果的试验研究——保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报(工学版), 2014, 48(9): 1586-1594.
[11] 苏亮,索靖,宋明亮. 钢筋砼框架结构易损性评估的参数敏感性分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1384-1390.
[12] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[13] 孙晓燕, 王龙威, 王海龙, 张治成. 基于模型试验的FRP加固钢筋砼梁抗弯疲劳性能预测[J]. 浙江大学学报(工学版), 2014, 48(12): 2230-2237.
[14] 潘骁宇,谢旭,李晓章,孙文智,朱汉华. 锈蚀高强度钢丝的力学性能与评级方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1917-1924.
[15] 蒋遨宇,陈驹,金伟良. HRB500级钢筋混凝土梁受弯性能分析[J]. J4, 2013, 47(9): 1566-1572.