Please wait a minute...
J4  2013, Vol. 47 Issue (2): 293-299    DOI: 10.3785/j.issn.1008-973X.2013.02.016
能源工程     
微小内螺纹管冷凝实验结果及关联式评价
王智科, 孙显东, 郭思璞, 李红霞, 李蔚, 朱华
浙江大学 能源工程系,浙江 杭州310027
Experimental Result of condensation in micro-fin tubes of
different geometries
WANG Zhi-ke, SUN Xian-dong, GUO Si-pu, LI Hong-xia, LI Wei, ZHU Hua
Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

为了研究不同顶角的内螺纹管单相及冷凝的压降及换热性质,对具有相同外径(5 mm)、相同螺旋角(18°)的内螺纹管进行实验,使用制冷剂为R22和R410A,质量流速为200~650 kg/(m2·s),饱和温度为320 K,进出口干度分别为0.8和0.1.结果表明,内部实际换热面积增加比Aai/Afr是和强化换热系数直接正相关的.其中R22为工质的1#管和R410A为工质的7#管具有相对高的换热系数和相对低的压降.且在计算压降时,应用了Churchill模型[27]得出的摩擦系数及一个合适的相对粗糙度来修正光管的压降关联式.对Kedzierski和Goncalves关联式[11]进行修正,用基于齿根直径的换热面积代替实际内部换热面积,使误差在20%以内.
关键词:

关键词: 内螺纹管冷凝压降换热    
Abstract:

 An experimental investigation was performed with R22 and R410A for single-phase flow and condensation inside seven micro-fin tubes with the same outer diameter 5 mm and helix angle 18° to obtain pressure drop and heat transfer coefficient characteristics of tubes with different apex angle α. Data are for mass fluxes at 200~650 kg/(m2·s). The nominal saturation temperature is 320 K, with inlet and outlet qualities of 0.8 and 0.1, respectively. The results suggest a positive correlation between surface heat-transfer area ratio and heat exchange enhancement ratio. When R22 is used, Tube 1 has the relatively high heat transfer coefficient and relatively low pressure drop, the same as tube 7 when R410A is used. In addition, Pressure drop correlations for plain tubes were applied to micro-fin tubes by using a friction factor calculated by the Churchill model[27] and a suitable relative roughness. The Kedzierski and Goncalves correlation[11]has been modified to be based on the nominal heat transfer area adopting the fin root diameter instead of the actual inner surface heat transfer area, which can predict all data points within a ± 20% error band.

Key words: Micro-fin tube    condensation    pressure drop    heat transfer
出版日期: 2013-03-14
:  TK 124  
基金资助:

国家“十一五”科技支撑计划资助项目(2012BAA10B01);国家自然科学基金资助项目(51210011).

通讯作者: 李蔚,男,教授,博导.     E-mail: weiLi96@zju.edu.cn
作者简介: 王智科(1987—),男,硕士生,从事强化传热的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王智科, 孙显东, 郭思璞, 李红霞, 李蔚, 朱华. 微小内螺纹管冷凝实验结果及关联式评价[J]. J4, 2013, 47(2): 293-299.

WANG Zhi-ke, SUN Xian-dong, GUO Si-pu, LI Hong-xia, LI Wei, ZHU Hua. Experimental Result of condensation in micro-fin tubes of
different geometries. J4, 2013, 47(2): 293-299.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.02.016        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I2/293

[1] 黄理浩,陶乐仁,郑志皋,等.R410A在管内冷凝换热及压降的实验研究[J].制冷技术,2011,39(4): 31-34.
HUANG Li-hao, TAO Le-ren, ZHENG Zhi-gao, et al, Experimental study on condensation heat transfer and pressure drop in internally thread enhanced tube with R410A [J].Refrigeration Technology, 2011, 39(4): 31-34.
[2] 张建国,陶乐仁,王伟,等.R22和R410A在水平微肋管内冷凝性能的实验研究[J].制冷与空调.2010, (2): 10-13.
ZHANG Jianguo, TAO Leren, WANG Wei, et al, Experimental study on condensation heat transfer performance of horizontal microfin tube with R22 and R410A [J]. Refrigeration & Air Conditioning, 2010, (2): 10-13.
[3] THOME J R. Engineering Data Book Ⅲ[M]. Lausanne: Wolverine Tube, Inc., 2004: 567-603.
[4] YANG C Y. A critical review of condensation heat transfer predicting modelseffect of surfacetension force [J]. Journal of Enhanced Heat Transfer, 1999, 6(2/4): 217-236.
[5] CAVALLINI A, DEL COL D, DORETTI L, et al, Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes [J]. International Journal of Refrigeration, 2000, 1 (23): 4-25.
[6] WEBB R L, KIM N H. Principles of Enhanced Heat Transfer [M]. 2nd ed. New York: Taylor & Francis Group, 2004: 234-243.
[7] SCHLAGER L M, PATE M B, BERGLES A E. Evaporation and condensation heat transfer and pressure drop in horizontal 12.7mm microfin tubes with refrigerant 22[J]. Journal of Heat Transfer, 1990, 112(4): 1041-1047.
[8] WU X M, WANG X L, WANG W C. Condensation heat transfer and pressure drop of R22 in 5-mm diameter microfin tubes [J]. Journal of Enhanced Heat Transfer, 2004,11: 275-282.
[9] CAVALLINI A, BELLA B, LONGO G A, et al, Experimental heat transfer coefficients during condensation of halogenated refrigerants on enhanced tubes [J]. Journal of Enhanced Heat Transfer, 1995,(2): 115-125.
[10] CHOI J Y, KEDZIERSKI M A, DOMANSKI P A, Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes [C]∥Proceedings of IIF-IIR Commission. B1: Paderborn, Germany: B4, 2001: 9-16.
[11] KEDZIERSKI M A, GONCALVES J M. Horizontal convective condensation of alternative refrigerants within a microfin tube [J]. Journal of Enhanced Heat Transfer, 1999, 6: 161-178.
[12] HUANG X C, DING G L, HU H T, et al, Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes [J]. Experimental Thermal and Fluid Science, 2010, 34(7): 845-856.
[13] DING G L, HU H T, HUANG X C, et al, Experimental investigation and correlation of twophase frictional pressure drop of R410Aoil mixture flow boiling in a 5 mm microfin tube [J]. International Journal of Refrigeration, 2009, 32(1): 150-161.
[14] LI W, WU Z. A general criterion for evaporative heat transfer in micro/mini-channels [J].International Journal of Heat and Mass Transfer, 2012, 53(9/10): 19671976.
[15] LI W, WU Z. A general correlation for adiabatic two-phase pressure drop in micro/mini-channels [J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2732-2739.
[16] LI W, WU Z. A general correlation for evaporative heat transfer in micro/minichannels [J]. International Journal of Heat and Mass Transfer, 2010, 53: 1778-1787.
[17] GNIELINSKI V. New equations for heat and mass transfer in turbulent pipe and channel flow [J]. International Chemical Engineering, 1976, 16: 359-368.
[18] PETUKHOV B S. Heat transfer and friction in turbulent pipe flow with variable physical properties [J], Advances in Heat Transfer, 1970, 6: 503-564.
[19] MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
[20] 王旭,吴赞,李冠球,等.不同5 mm内螺纹管的蒸发实验研究及传热和压降关联式的评价[C]∥工程热物理年会. 西安:工程热物理学会. 2011, 745-750.
Wang Xu, WU Zan, LI Guan-qiu, et al. Experimental investigation of condensation in micro-fin tubes of different geometries [C]∥Annual Conference of Engineering Thermophysics. Xi’an: Chinese Society of Engineering Thermophysics. 2011,745-750.
[21] RAVIGURURAJAN T S, BERGLES A E. General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes [J]. Augmentation of Heat Transfer in Energy Systems, ASME HTD, 1985, 52: 9-20.
[22] HARAGUCHI H, KOYAMA S, ESAKI J, et al, Condensation heat transfer of refrigerants HCFC134a, HCFC123 and HCFC22 in a horizontal smooth tube and a horizontal micro-fin tube [C]∥ Proceedings of 30th National Symp.  Yokohama, Japan: \
[s.n.\] 1993, 343-345.
[23] FRIEDEL L. Improved friction pressure drop correlations for horizontal and vertical twophase pipe flow[C]∥ in: European TwoPhase Flow Group Meeting. Ispra, Italy: \
[s.n.\], 1979, paper E2.
[24] MULLER-STEINHAGEN H, HECK K. A simple friction pressure drop correlation for two-phase flow pipes [J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308.
[25] GRONNERUD R. Investigation of liquid holdup, flow-resistance and heat transfer in circulation type evaporators, part VI: twophase flow resistance in boiling refrigerants [M]. Bull. de I’ Inst. du Froid, 1979, 255-267.
[26] BEATTIE D H, WHALLEY P B. Simple two-phase frictional pressure drop calculation method [J], International Journal of Multiphase Flow, 1982, (8): 83-87.
[27] CHURCHILL S W. Friction factor equation spans all fluid flow regimes [J]. Chemical Engineering, 1977, 84(24): 91-92.
[28] CAVALLINI A, DEL COL D, DORETTI L, et al. A new computational procedure for heat transfer and pressure drop during refrigerant condensation inside enhanced tubes [J]. Journal of Enhanced Heat Transfer, 1999, 6(6): 441-456.
[29] MOSER K, WEBB R L, NA B. A new equivalent Reynolds number model for condensation in smooth tubes[J]. International Journal of Heat Transfer, 1998, 120(2): 410-417.
[30] SHAH M M. A general correlation for heat transfer during film condensation inside pipes [J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 547-556.

[1] 唐媛, 宋佳, 白杨, 张小斌, 邱利民. 滴状冷凝的实现方法研究进展[J]. 浙江大学学报(工学版), 2018, 52(2): 273-287.
[2] 段毅, 程乐鸣, 吴雪松, 邱坤赞, 骆仲泱. 内嵌换热面双层多孔介质预混燃烧试验研究[J]. 浙江大学学报(工学版), 2017, 51(8): 1626-1632.
[3] 李华山, 王汉治, 王令宝, 王显龙, 卜宪标. 溶液热交换器对双吸收式热变换器性能的影响[J]. 浙江大学学报(工学版), 2017, 51(3): 471-477.
[4] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[5] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[6] 田付有,黄连锋,范利武,俞自涛,胡亚才. 双粒度混合烧结矿颗粒填充床压降实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2077-2086.
[7] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[8] 侯霞丽,李晓东,陈彤,陆胜勇,纪莎莎,任咏. 垃圾焚烧飞灰中主要元素的深度分布及形态[J]. 浙江大学学报(工学版), 2015, 49(5): 930-937.
[9] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.
[10] 韩冬,龚国芳,刘毅,杨学兰. 基于不同阀芯结构的新型电液激振器[J]. 浙江大学学报(工学版), 2014, 48(5): 757-763.
[11] 王美燕, 张正威. 竖直地埋管换热器热作用半径的估算方法[J]. J4, 2013, 47(12): 2153-2159.
[12] 王子阳, 张仪萍, 战国会, 俞亚南. 有渗流时埋管换热器传热模型[J]. J4, 2012, 46(8): 1450-1456.
[13] 张长兴, 胡松涛, 刘玉峰, 丛晓春. 基于系统优化的岩土热物性确定方法[J]. J4, 2012, 46(12): 2237-2242.
[14] 张学军, 郑克晴, 田新建, 邱利民. 直接接触式冰浆生成器参数分析及设计要点[J]. J4, 2011, 45(6): 1136-1140.
[15] 刘震涛,吕锋,俞小莉. 动力舱冷却模块优化匹配方法实验[J]. J4, 2011, 45(11): 1997-2001.