Please wait a minute...
J4  2013, Vol. 47 Issue (1): 122-130    DOI: 10.3785/j.issn.1008-973X.2013.01.018
机械与能源工程     
基于BP-HGA的起重机刚性支腿动态优化设计
童水光, 王相兵, 钟崴, 张健
浙江大学 热工与动力系统研究所,浙江 杭州 310027
Dynamic optimization design for rigid landing leg of crane
based on BP-HGA
TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian
Institute of Thermal Science and Power System,Zhejiang University,Hangzhou 310027,China
 全文: PDF 
摘要:

针对门式起重机刚性支腿结构动态特性的复杂性和非线性,利用参数化有限元模型和BP神经网络,建立刚性支腿设计变量和最大动应力、弯曲动刚度及顶部最大动位移之间的映射关系.对于建立的神经网络模型,采用混合遗传算法(HGA)构造基于模糊动态罚函数的适应度函数引导遗传算法的搜索方向,寻求刚性支腿隔板、侧板的布置及尺寸最优化,并满足低应力、高固有频率及轻量化的要求.开发了某型号门式起重机刚性支腿多目标动态优化设计系统.应用结果表明,采用该优化方法能够有效地实现起重机刚性支腿的动态结构优化,显著提高了设计质量和效率.

关键词: 刚性支腿参数化有限元BP神经网络混合遗传算法动态罚函数多目标优化设计    
Abstract:

 Focused on the complexity and highly nonlinearity of the structural dynamics characteristic in the rigid landing leg of gantry crane, the parametric finite element model and the back propagation (BP) neural network were used to establish the mapping relationship between the design variables of rigid landing leg and the maximum dynamic stress, the bending dynamic stiffness, the maximum dynamic displacement on the top of rigid landing leg.  The hybrid genetic algorithm (HGA) was adopted based on the established neural network model in order to find the layout optimization of the clapboards, the lateral plates and their sizes in rigid landing leg. The fitness function was constructed based on fuzzy dynamic penalty function to guide the searching direction. Then the requirements of low-stress, high natural frequency and lightweight were meeted. Multi-objective dynamic optimization design systems were developed for the rigid landing leg of a certain crane. Application results indicate that the dynamic structural optimization of rigid landing leg can be effectively conducted, and the design quality and efficiency are evidently improved.

Key words: rigid landing leg    parametric finite element    BP neural network    hybrid genetic algorithm    dynamic penalty function    multi-objective optimization design
出版日期: 2013-03-05
:  TP 391  
基金资助:

 上海市“创新行动计划”产学研联盟专项资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

童水光, 王相兵, 钟崴, 张健. 基于BP-HGA的起重机刚性支腿动态优化设计[J]. J4, 2013, 47(1): 122-130.

TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian. Dynamic optimization design for rigid landing leg of crane
based on BP-HGA. J4, 2013, 47(1): 122-130.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2013.01.018        http://www.zjujournals.com/xueshu/eng/CN/Y2013/V47/I1/122

[1] 荣见华,郑健龙,徐飞鸿.结构动力修改及优化设计[M].北京:人民交通出版社, 2002: 13-25.
[2] 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2003: 110-130.
[3] 陈官顺,刘艳斌,叶星. 龙门起重机结构动态优化设计[J]. 现代制造工程,2010(8): 149-152.
CHEN Guan-shun, LIU Yan-bin, YE Xing. Structural dynamic optimization design for gantry crane [J]. Modern Manufacturing Engineering, 2010(8): 149-152.
[4] 杨敏,黄俊杰,王浩,等. 载货车车架的灵敏度分析及结构优化[J]. 合肥工业大学学报:自然科学版,2011, 34(7): 993-996.
YANG Min, HUANG Jun-jie, WANG Hao, et al. Sensitivity analysis and structural optimization of truck frame [J]. Journal of Hefei University of Technology: Natural  Science Edition, 2011,34(7): 993-996.
[5] 于兰峰,王金诺.基于遗传算法和神经网络的塔机结构动态优化设计[J].中国机械工程,2008, 19(1): 61-63.
YU Lan-feng, WANG Jin-nuo. Dynamic optimum design of tower crane based on neural networks and genetic algorithms [J]. China Mechanical Engineering, 2008, 19(1): 61-63.
[6] 郑艳平,朱厚军.具有横向裂纹轴的弯曲刚度研究[J].船舶工程,2006, 28(5): 10-13.
ZHENG Yan-ping, ZHU Hou-jun. Study on flexural stiffness of a shaft with transverse crack [J]. Ship Engineering, 2006, 28(5): 10-13.
[7] 陈浩,李军,唐宇,等. 基于动态罚函数遗传算法的电磁探测卫星多星规划方法[J].国防科技大学学报,2009, 31(2): 44-50.
CHEN Hao, LI Jun, TANG Yu, et al. An approach for electromagnetic detection satellites scheduling based on genetic algorithm with dynamic punish function [J]. Journal of National University of Defense Technology, 2009, 31(2): 44-50.
[8] ADELMAN H M, HAFTKA R T. Sensitivity analysis of discrete structural systems[J]. AIAA Journal, 1986, 24(5): 823-832.
[9] 王安麟,刘广军,姜涛.广义机械优化设计[M].武汉:华中科技大学,2008: 63-83.
[10] 于兰峰,王金诺.塔式起重机结构系统动态优化设计[J].西南交通大学学报,2007, 42(2): 206-210.
YU Lan-feng,WANG Jin-nuo. Dynamic optimum design of tower crane structures [J]. Journal of Southwest JiaoTong University, 2007, 42(2): 206-210.
[11]孙学伟,徐秉业. 起重机计算实例[M].北京: 中国铁道出版社,1985: 362-378.
[12]GEN M, CHENG R W. Genetic algorithms and engineering optimization [M]. New York: Wiley, 2000.
[13]李耀明,徐立章,丁为民.基于混合遗传算法的梳脱割台参数优化[J].农业机械学报,2003,34(4): 50-52.
LI Yaoming, XU Li-zhang, DING Wei-min. Parameter optimization of stripping header by a hybrid genetic algorithm [J].Transactions of the Chinese Society for Agricultural Machinery,2003,34 (4): 50-52.
[14]王东华,刘占生,窦唯.基于混合遗传算法的转子系统优化设计[J].振动与冲击,2009,28(5): 88-89.
WANG Dong-hua, LIU Zhan-sheng, DOU Wei. Rotor dynamics optimization based on a hybrid genetic algorithm [J]. Journal of Vibration and Shock, 2009, 28(5): 88-89.
[15]李锋,齐晓慧,李洪梁.基于权重因子的四种模糊控制规则比较[J].计算机仿真,2007, 24(12): 138-140.
LI Feng, QI Xiao-hui, LI Hong-liang.Comparison of fuzzy controller rules based on weight factor [J] . Computer Simulation, 2007, 24(12):138-140.

[1] 谢杰, 黄筱调, 方成刚, 周宝仓, 陆宁. 磨齿机电主轴热特性及热误差建模[J]. 浙江大学学报(工学版), 2018, 52(2): 247-254.
[2] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[3] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[4] 刘磊,杨鹏,刘作军. 基于多源信息和粒子群优化算法的下肢运动模式识别[J]. 浙江大学学报(工学版), 2015, 49(3): 439-447.
[5] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[6] 王德明, 王莉, 张广明. 基于遗传BP神经网络的短期风速预测模型[J]. J4, 2012, 46(5): 837-841.
[7] 赵振, 张树有. 全分断周期混合电流模型及其应用[J]. J4, 2012, 46(2): 301-308.
[8] 徐敬华, 张树有. 基于形态分布图与BP神经网络的三维模型检索方法[J]. J4, 2009, 43(5): 877-883.
[9] 林兰芬, 欧冠男, 等. 多约束条件下自动配棉的混合遗传算法[J]. J4, 2009, 43(5): 801-806.
[10] 宓云軿 王晓萍 金鑫. 基于机器学习的水质COD预测方法[J]. J4, 2008, 42(5): 790-793.
[11] 崔剑 祁国宁 纪杨建 顾巧详 苏少辉 胡浩. 基于客户结构阶层和BP的PLM客户需求[J]. J4, 2008, 42(3): 528-533.
[12] 王晓萍 孙继洋 金鑫. 基于BP神经网络的钱塘江水质指标的预测[J]. J4, 2007, 41(2): 361-364.
[13] 潘栋 潘双夏 冯培恩 王维锐. 基于神经网络的减振器性能仿真[J]. J4, 2007, 41(11): 1898-1902.
[14] 穆宝忠 刘玉玲 陆祖康 余飞鸿. 数码冲印颜色空间转化的神经网络优化[J]. J4, 2006, 40(9): 1494-1497.
[15] 王晓萍 林桢 金鑫. 紫外扫描式水质COD测量技术与仪器研制[J]. J4, 2006, 40(11): 1951-1954.