Please wait a minute...
J4  2012, Vol. 46 Issue (12): 2252-2258    DOI: 10.3785/j.issn.1008-973X.2012.12.017
机械工程     
起爆位置偏差对结构内爆炸荷载的影响分析
宁鹏飞1,2,唐德高2
1. 国防科技大学 指挥军官基础教育学院,湖南 长沙 410073;2. 解放军理工大学
工程兵工程学院,江苏 南京 210007
Influence analysis of ignition location departure on blast load of
close range internal blast
NING Peng-fei 1,2, TANG De-gao2
1. School of Command Basic Education, National University of Defense Technology, Changsha 410073, China;
2. Engineering Institute of Engineers Corps, PLA University of Science and Technology, Nanjing 210007, China
 全文: PDF 
摘要:

针对结构近距内爆炸试验所得的内爆炸荷载数据离散较大的特点,建立考虑起爆位置偏差影响的三维有限元内爆炸流场计算数值模型,对比试验数据验证了数值计算模型的合理性.采用数值方法计算了起爆位置有偏差时的内爆炸流场,对比分析了起爆位置偏差对结构近距内爆炸荷载的影响.结果表明:结构内爆壁面反射超压峰值对起爆位置偏差非常敏感,拟合得到了起爆位置偏差距离对超压峰值影响系数的经验计算公式;起爆位置偏差对冲量影响很小,其最大相对差值不超过2%.

关键词: 爆炸荷载结构内爆炸起爆位置数值模拟    
Abstract:

The published experimental results of close range internal blast offered us lots of data but showed a wide scatter. In order to investigate the influence of ignition location departure on the blast load of close range internal blast, threedimensional finite element internal blast flow field calculating models taking ignition location departure into account were established and were validated with experimental data. Then the internal blast flow field was calculated with numerical method as ignition location departure from the center of charge. The results show that the reflected peak overpressure is sensitive to the ignition location departure. The empirical formulas evaluating the peak overpressure variation were fitted. The impulse of internal blast has slight difference while the detonation location departure from the center of charge, and the max relative error is less than 2%.

Key words: Blast load    structural internal blast    ignition location    numerical simulation
出版日期: 2013-01-08
:  O 393  
基金资助:

国家自然科学基金创新研究群体科学基金资助项目(51021001).

通讯作者: 唐德高,男,教授,博导.     E-mail: tdg62@163.com
作者简介: 宁鹏飞(1984—),男,博士生,从事结构抗爆隔振理论及应用研究.E-mail:npf1984@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宁鹏飞,唐德高. 起爆位置偏差对结构内爆炸荷载的影响分析[J]. J4, 2012, 46(12): 2252-2258.

NING Peng-fei , TANG De-gao. Influence analysis of ignition location departure on blast load of
close range internal blast. J4, 2012, 46(12): 2252-2258.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2012.12.017        http://www.zjujournals.com/xueshu/eng/CN/Y2012/V46/I12/2252

[1] WELCH C R. Intunnel air engineering model for internal and external detonations[C]∥Proceeding of the 8th Symposium on the Interaction of Nonnuclear Munitions with Structure. Mclean Virginia: [s. n.], 1997: 209-221.
[2] 刘晶波,闫秋实,杜义欣,等.地铁地下结构内爆炸防护问题研究[J].振动与冲击,2008,27(8): 16-19.
LIU Jingbo, YAN Qiushi, DU Yixin, et al. Study on the protection of subway structures subjected to blast[J]. Journal of Vibration and Shock, 2008,27(8): 16-19.
[3] JANNAF. Hazard of chemical rockets and propellants handbook [M]. Silver Spring, Maryland: National Technical Information Service, 1972.
[4] BRITT J R. Attenuation of short duration blast in entranceways and tunnels[C]∥Proceeding of the 2th Symposium on the Interaction of Nonnuclear Munitions with Structure. Panama City Beach: [s. n.], 1985: 466-471.
[5] CHALES D, LITTLE J R. Airblast attenuation in entranceways and other Typical Components of Structures[R]. Vicksburg, USA: US Army Corps of Engineers Waterways Experiment Station, 1984.
[6] JOACHIM C E., MCMAHON G W, LUNDERMAN C V, et al. Airblast effects research: smallscale experiments and calculations[R]. Vicksburg, USA: US Army Corps of Engineers Waterways Experiment Station, 1999.
[7] SCHEKLINSKIGLUCK G. Blast in tunnels and rooms from cylindrical HEcharges outside the tunnel entrance[C]∥Proceedings of the 6th Symposium on the Interaction of NonNuclear Munitions with Structures. Panama City Beach FL: [s. n.], 1993: 68-73.
[8] 杨科之,杨秀敏.坑道内化爆冲击波的传播规律[J].爆炸与冲击,2003,23(1): 37-40.
YANG Kezhi, YANG Xiumin. Shock waves propagation inside tunnels[J]. Explosion and Shock Waves, 2003,23(1): 37-40.
[9] 李秀地,郑颖人.装药长径比对坑道中冲击波峰值压力影响的试验[J].解放军理工大学学报:自然科学版,2007,8(6): 573-576.
LI Xiudi, ZHENG Yingren. Influence of length/diameter ratio of explosive charge on intunnel blast peak pressure[J]. Journal of PLA University of Science and Technology, 2007,8(6): 573-576.
[10] 李秀地,郑颖人.坑道内冲击波冲量传播规律的试验研究[J].爆破器材,2007,36(3): 4-7.
LI Xiudi, ZHENG Yingren. Scale model tests to determine blast impulse from HEcharges Intunnel[J]. Explosive Materials, 2007,36(3): 4-7.
[11] 郑津洋,邓贵德,陈永军,等.离散多层厚壁爆炸容器抗爆炸性能试验研究[J].爆炸与冲击,2005,25(6): 506-511.
ZHENG Jingyang, DENG Guide, CHEN Yongjun, et al. Experimental investigation on dynamic response and fracture characteristics of discrete multilayered thickwalled explosion containment vessels[J]. Explosion and Shock Waves, 2005,25(6): 506-511.
[12] 邓贵德.离散多层爆炸容器内爆载荷和抗爆特性研究[D].杭州:浙江大学,2008.
DENG Guide. Research on internal explosive loading and blast resistant characteristics of discrete multilayered explosion containment vessels[D]. Hangzhou: Zhejiang University, 2008.
[13] 张德志,李焰,王等旺,等. 球形装药近距离爆炸正反射冲击波实验研究[J]. 兵工学报,2009,30(12): 1663-1667.
ZHANG Dezhi, LI Yan, WANG Dengwang. et al. Experiment investigations on normal reflected blast wave near the spherical explosive[J]. Acta Armamentarii, 2009,30(12): 1663-1667.
[14] 王神送,张立,程宏兵.装药密度对空气冲击波参数影响的实验研究[J].爆破器材,2010,39(1): 4-7.
WANG Shensong, ZHANG Li, CHENG Hongbing. Experimental study for effects of charge density on the air shockwave parameters[J]. Explosive Materials, 2010, 39(1): 4-7.
[15] 饶国宁,陈网桦,梁德山,等.密闭空间内不同炸药爆源的能量输出结构及与目标作用研究[J].爆炸与冲击,2007,27(5): 445-410.
RAO Guoning, CHEN Wanghua, LIANG Deshan, et al.. Study on the energy output characteristics and action with objects of different explosives in the confined field[J]. Explosion and Shock Waves, 2007,27(5): 445-410.
[16] 胡八一,柏劲松,张明,等.真实爆炸容器壳体动力响应的强度分析[J].应用力学学报,2001,18(3): 91-95.
HU Bayi, BAI Jinsong, ZHANG Ming, et al. The dynamic response analysis of a real explosion container vessel[J]. Chinese Journal of Applied Mechanics, 2001,18(3): 91-95.

[1] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[2] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[3] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[4] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.
[5] 高航, 付有志, 王宣平, 彭灿. 螺旋面磨料流光整加工仿真与试验[J]. 浙江大学学报(工学版), 2016, 50(5): 920-926.
[6] 刘海龙, 周家伟, 陈云敏, 李育超, 詹良通. 城市生活垃圾填埋场稳定化评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2336-2342.
[7] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[8] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[9] 谢阳,姚子澍,麻剑,罗麒元,许沧粟. 柴油温度对喷孔内流动特性影响的仿真分析[J]. 浙江大学学报(工学版), 2015, 49(5): 938-943.
[10] 曹晓萌, 顾正华. 3种非淹没双体丁坝作用尺度划分准则及比较[J]. 浙江大学学报(工学版), 2015, 49(2): 200-207.
[11] 胡友瑞,刘彦,汪洋,刘建忠,周俊虎,胡巍,李洪伟. 高湿氢氧喷注器数值分析与正交设计[J]. 浙江大学学报(工学版), 2015, 49(12): 2403-2409.
[12] 董永申, 王定标, 向飒, 夏春杰. 倾斜螺旋片强化的套管换热器数值模拟[J]. 浙江大学学报(工学版), 2014, 48(9): 1-6.
[13] 赵飞, 杨帅, 吴俊, 吴淳杰, 吴大转. 基于Fluent的压力能交换器端面液膜支撑机理分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1528-1533.
[14] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[15] 许忠源,徐长节,陈冉,蔡袁强. 涌潮冲击排桩式丁坝的三维数值模拟[J]. J4, 2014, 48(3): 504-513.