Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1633-1637    DOI: 10.3785/j.issn.1008-973X.2012.09.013
土木工程     
桁架结构的易损性评价及破坏场景识别研究
何江飞,高博青
浙江大学 建筑工程学院,浙江 杭州 310058
Vulnerability assessment and failure scenarios identification
of truss structures
HE Jiang-fei, GAO Bo-qing
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF 
摘要:

针对桁架结构薄弱环节和关键构件的研究,分别以传递函数阵的H2范数及杆件应变能的相对值作为衡量结构整体性能和初始干扰的参数,给出了结构易损性的量化指标,通过桁架结构算例,验证了易损性评价指标的有效性和可行性.在此基础上,基于破坏场景的定义,采用最易破坏场景确定各构件的重要性系数;由最大破坏场景来确定结构破坏的最短路径,即关键路径;用最易损场景寻找结构中存在的易损路径,即薄弱环节.结合有限元软件ANSYS和数学工具MATLAB计算易损性指标,根据其大小将结构易损性进行等级划分,由倒塌和高度易损等级确定了结构的关键路径和薄弱环节,从而为桁架结构的破坏识别提供了一种新的量化评价标准.

关键词: 桁架结构易损性H2范数场景识别评价标准    
Abstract:

To investigate the weak link and key components of truss structures, this work took the H2 norm of the transfer function matrices as the structural performance measurement and the relative value of the strain energy as the measurement of the initial disturbance, respectively, then gave a quantitative description of the structural vulnerability with the two parameters. A vulnerability analysis of a truss structure was presented to validate the effectiveness and feasibility. According to the definition of failure scenarios, the element important coefficient was identified with the minimum failure scenarios; and the shortest failure path of the structure, also namely the key path, was identified with the maximum failure scenarios; and the vulnerable path, also namely the weakness of the structure, was identified with the most vulnerable failure scenarios. By employing finite element software ANSYS and mathematical tool MATLAB, the vulnerability index was calculated, based on which, the failure scenarios were ranked, then the key path and the congenital weakness could be obtained by searching the collapse and highly vulnerable rank. This method provides a new evaluation standard to recognize the failure of truss structures.

Key words: truss structures    vulnerability    H2 norm    scenario identification    evaluation standard
出版日期: 2012-10-09
:  TU 393.3  
基金资助:

 国家自然科学基金资助项目(51178414);浙江省自然科学基金资助项目(Y1110438).

通讯作者: 高博青,男,教授.     E-mail: bqgao@zju.edu.cn
作者简介: 何江飞(1986-),男,硕士生,从事空间钢结构的研究. E-mail: hejiangfeihf@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

何江飞,高博青. 桁架结构的易损性评价及破坏场景识别研究[J]. J4, 2012, 46(9): 1633-1637.

HE Jiang-fei, GAO Bo-qing. Vulnerability assessment and failure scenarios identification
of truss structures. J4, 2012, 46(9): 1633-1637.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2012.09.013        http://www.zjujournals.com/xueshu/eng/CN/Y2012/V46/I9/1633


[1] 范峰, 支旭东, 沈世钊. 大跨度网壳结构强震失效机理研究\
[J\]. 建筑结构学报, 2010, 31(6): 153-159.
FAN Feng, ZHI Xudong, SHEN Shizhao. Failure mechanism of large span reticulated shells subjected to severe earthquakes\
[J\].Journal of Building Structures, 2010, 31(6): 153-159.

[2] AGARWAL J, BLOCKLEY D I, WOODMAN N J. Vulnerability of 3D dimensional trusses\
[J\]. Structural Safety, 2001, 23(3): 203-220.

[3] ENGLAND J, AGARWAL J, BLOCKLEY D I. The vulnerability of structures to unforeseen events\
[J\]. Computers and Structures, 2008, 86(10): 1042-1051.

[4] 于刚, 孙利民. 基于损伤场景的桁架结构拓扑易损性分析\
[J\]. 同济大学学报:自然科学版, 2010, 38(4): 475-480.
YU Gang, SUN Limin. Damage scenariosbased topological vulnerability analysis of truss structures\
[J\].Journal of Tongji University:Natural Science, 2010, 38(4): 475-480.

[5] 高扬, 刘西拉. 结构鲁棒性评价中的构件重要性系数\
[J\].岩石力学与工程学报, 2008, 27(12): 2575-2584.
GAO Yang, LIU Xila. Importance coefficients of components in evaluation of structural robustness\
[J\]. Journal of Rock Mechanics and Engineering, 2008, 27(12): 2575-2584.

[6]  张雷明, 刘西拉. 框架结构能量流网络及其初步应用\
[J\]. 土木工程学报, 2007, 40(3): 45-49.
ZHANG Leiming, LIU Xila, Network of energy transfer in frame structures and its preliminary application\
[J\]. Civil Engineering Journal, 2007, 40(3): 45-49.

[7] 刘西拉. 结构工程学科的现状与展望\
[M\]. 北京: 人民交通出版社, 1997:58-61.

[8] 欧进萍. 结构振动控制——主动控制、半主动控制和智能控制\
[M\].北京: 科学出版社, 2003:1-3.

[9] 侯媛彬. 现代控制理论基础\
[M\]. 北京: 北京大学出版社, 2006:14-16.

[10] 王德进. H2和H∞优化控制理论\
[M\]. 哈尔滨: 哈尔滨工业大学出版社, 2001: 23-25.

[11] SMITH J W. Structural robustness analysis and the fast fracture analogy\
[J\].Structural Engineering International,2006,16(2):1-12.

[1] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[2] 苏亮,索靖,宋明亮. 钢筋砼框架结构易损性评估的参数敏感性分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1384-1390.
[3] 王彤,王炎,谢旭,张鹤. 不等高桥墩铁路减隔震桥梁钢阻尼支座地震易损性[J]. 浙江大学学报(工学版), 2014, 48(11): 1909-1916.
[4] 姚霄雯, 蒋建群, 刘国华. 基于拱冠位移的拱坝地震易损性[J]. J4, 2013, 47(10): 1839-1845.
[5] 关富玲,戴璐. 双环可展桁架结构动力学分析与试验研究[J]. J4, 2012, 46(9): 1605-1610.
[6] 陈勇, 陈超, 金新阳, 王旭, 孙炳楠, 陈水福. 基于决策融合的风环境评价标准风洞试验研究[J]. J4, 2012, 46(12): 2210-2214.
[7] 苏亮 董石麟. 多点输入下门式桁架结构的抗震分析[J]. J4, 2007, 41(1): 187-192.
[8] 赵孟良 吴开成 关富玲. 空间可展桁架结构动力学分析[J]. J4, 2005, 39(11): 1669-1674.