Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1580-1584    DOI: 10.3785/j.issn.1008-973X.2012.09.005
无线电电子学、电信技术     
高铁列车通信中无线衰落分析
刘俊飙1 ,金心宇1,董芳2
1. 浙江大学 信息科学与工程学院,浙江 杭州 310027;2. 浙江大学城市学院
信息与电气工程学院,浙江 杭州 310015
Wireless fading analysis  in high-speed train communication
LIU Jun-biao1, JIN Xin-yu1,DONG Fang2
1. College of Information Science and Engineering, Zhejiang University, Hangzhou 310027, China;
2. College of Information and Electrical Engineering, City College, Zhejiang University, Hangzhou 310015, China
 全文: PDF 
摘要:

为在高铁列车通信中应用无线宽带接入技术拓展车地无线通信系统,分析在此场景下的衰落模型.在高速铁路车地无线通信基本架构的基础上,分别从无线信道自由空间模型、两径模型、简化路径损耗模型等方面研究高铁无线信道的路径损耗、阴影衰落模型.通过实测数据分析和建模衰落信道,表明车地通信中无线信号传播在大尺度范围内近似于服从自由空间模型.基于实测数据,推导高铁车地通信中的中断概率表明,无线信道参数决定中断概率曲线、最低接收功率决定车地通信最大距离.与中断概率一样,小区覆盖范围曲线也由无线信道主要参数决定,但最大车地无线通信距离值与中断概率下的取值约有10%的差距.

关键词:  高速列车无线信道路径损耗阴影衰落    
Abstract:

In order to make communication systems in high-speed train adopt wireless broadband-access technologies, the fading models for the scenario were analyzed to develop train-to-ground wireless communication (TGWC) system.Based on the fundamental architecture in TGWC for high-speed railway, the wireless fading models of path loss and shadow effect were studied among free space model, two-ray model and simplified path loss model. The results of analyzing the measured data and modeling fading channel show that the wireless transmission in TGWC approximately obeys free space model in large-scale propagation. In view of the measured data, the deviation of outage probability in TGWC illustrates that the curve is determined by the parameters of wireless channel while the maximal train-to-ground distance is decided by the minimal receipt power. Similar to the outageprobability curve, the curve of cell coverage is also decided by the wireless fading channel, but the maximal train-to-ground distance makes 10% difference to the value in outage probability.

Key words: high-speed train    wireless channel    path loss    shadow effect
出版日期: 2012-10-09
:  TN 925.5  
基金资助:

国家科技支撑计划资助项目(2009BAG12A08-07);国家"863"高技术研究发展计划资助项目(0912JJ0104-TX00-H-HZ-00120100105,0912JJ0203-WX00-H-HZ-001-20091116).

通讯作者: 金心宇,男,教授.     E-mail: jinxy@zju.edu.cn
作者简介: 刘俊飙(1980-),男,博士生,从事高铁无线通信研究. E-mail: hzclive@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘俊飙 ,金心宇,董芳. 高铁列车通信中无线衰落分析[J]. J4, 2012, 46(9): 1580-1584.

LIU Jun-biao, JIN Xin-yu,DONG Fang. Wireless fading analysis  in high-speed train communication. J4, 2012, 46(9): 1580-1584.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2012.09.005        http://www.zjujournals.com/xueshu/eng/CN/Y2012/V46/I9/1580

[1] 中国铁道部. 中国铁路中长期铁路网规划(2008年调整)[EB/OL]. [2008-11-08]. http:∥www.chinamor.gov.cn/tllwjs /tlwgh_8.html.
[2] IBM公司. 智慧的铁路[EB/OL]. [2009-09-01]. http:∥www. ibm.com/smarterplanet/cn/zh/rail_transportation/ideas/.
[3] 钟章队. 铁路GSMR数字移动通信系统[M]. 北京:中国铁道出版社,2007:32-76.
[4] LINDSEY R. Positive train control in North America [J]. IEEE Vehicular Technology Magazine,2009, 4(4):22-26.
[5] PETIT W. Interoperable positive train control [J]. IEEE Vehicular Technology Magazine,2009, 4(4):27-34.
[6] TEIBELING C. Positive train control for Australia [J]. IEEE Vehicular Technology Magazine,2009, 4(4):35-44.
[7] ZHU L, ZHANG Y, NING B. Trainground communication in CBTC based on 80211b [C]∥ Proceeding of CMC 2009. Yunnan: IEEE, 2009: 368-372.
[8] GOLDSMITH A. Wireless communication [M]. London: Cambridge University Press, 2005.
[9] RUSTAKO A, AMITAY N, OWENS G. Radio propagation at microwave frequencies for lineofsight microcellular mobile and personal communications [J]. IEEE Transactions on Vehicular Technology, 1991, 40(1):203-210.
[10] AMITAY N. Modeling and computer simulation of wave propagation in lineal lineofsight microcells [J]. IEEE Transactions on Vehicular Technology, 1992, 41(4): 337-342.
[11] IKEGAMI F, TAKEUCHI S, YOSHIDA S, Theoretical prediction of mean field strength for urban mobile radio[J]. IEEE Transactions on Antennas and Propagation, 1991,39(3):299-302.
[12] RAPPAPORT T. Wireless communication  principles and practice [M]. London:PrenticeHall, 2001.
[13] ERCEG V, GREENSTEIN L, TJANDRA S, et al. An empirically based path loss model for wireless channels in suburban environments [J]. IEEE Journal of Selected Areas Communication, 1999, 17(7):1205-1211.
[14] BHASSEMZADEH S, GREENSTEIN L, KAVCIC A, et al. Indoor pathloss model for residential and commercial buildings [C]∥ Proceeding of VTC 2003. Orlando: IEEE, 2003: 3115-3119.

[1] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[2] 任迪, 万健, 殷昱煜, 周丽, 高敏. 基于贝叶斯分类的Web服务质量预测方法研究[J]. 浙江大学学报(工学版), 2017, 51(6): 1242-1251.
[3] 宋瑞祥, 张庆国, 于海敬, 徐丽, 施悯悯. 遥感数据的城市不透水面估算及增温效应[J]. 浙江大学学报(工学版), 2017, 51(5): 1051-1056.
[4] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[5] 蒋鑫龙, 陈益强, 刘军发, 忽丽莎, 沈建飞. 面向自闭症患者社交距离认知的可穿戴系统[J]. 浙江大学学报(工学版), 2017, 51(4): 637-647.
[6] 牛纪强, 周丹, 梁习锋, 贾丽荣. 导流装置对受电弓非定常气动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(4): 752-760.
[7] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[8] 张捷, 肖新标, 王瑞乾, 金学松. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版), 2017, 51(3): 545-553.
[9] 李晓东, 祝跃飞, 刘胜利, 肖睿卿. 基于权限的Android应用程序安全审计方法[J]. 浙江大学学报(工学版), 2017, 51(3): 590-597.
[10] 苏星, 王慧泉, 金仲和. 实时高可靠综合电子系统的逻辑架构设计[J]. 浙江大学学报(工学版), 2017, 51(3): 628-636.
[11] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[12] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[13] 张伟, 胡友德, 郑立荣. 基于频率可调驻波振荡器的芯片时钟系统设计[J]. 浙江大学学报(工学版), 2017, 51(1): 168-176.
[14] 谢罗峰, 徐慧宁, 黄沁元, 赵越, 殷国富. 应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷[J]. 浙江大学学报(工学版), 2017, 51(1): 184-191.
[15] 刘海宾, 王勇, 马鹏磊, 谢玉东. 基于平行式振荡翼系统参数耦合分析[J]. 浙江大学学报(工学版), 2017, 51(1): 153-159.