Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1565-1571    DOI: 10.3785/j.issn.1008-973X.2012.09.003
无线电电子学、电信技术     
基于三维激光雷达的动态障碍实时检测与跟踪
杨飞,朱株,龚小谨,刘济林
浙江大学 信息科学与电子工程学系,浙江 杭州 310027
Real-time dynamic obstacle detection and tracking using 3D Lidar
YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

为了解决在大数据量的情况下实现高效检测与跟踪的难点,提出一种室外动态未知环境下自主车的多障碍实时检测与跟踪的算法.由于Velodyne 64线三维激光雷达具有数据量大、精度高等特点,采用其与相机结合感知环境.算法结合从图像处理中得到的道边信息将原始激光雷达数据的感兴趣区域转化为栅格地图,在地图上采用区域标记和模板匹配的方法进行聚类和特征提取,检测得到盒子模型的障碍物,并进行障碍物跟踪.为了避免在多障碍物的情况下出现虚警和漏检,基于多假设跟踪数据关联和卡尔曼滤波来跟踪连续多帧的障碍物.本算法在自主车平台上能够以每帧100 ms实现准确、稳定地检测和跟踪.

关键词: 三维激光雷达栅格地图障碍物检测多假设跟踪卡尔曼滤波    
Abstract:

In order to detect and track obstacles under large amount of data efficiently, an approach for real-time multiple obstacle detection and tracking in dynamic unknown environment was presented. The Velodyne 64E 3D Lidar has the property of large amount of data and high accuracy, which was combined with camera for environment perception. The algorithm firstly coverts the region of interest of the Lidar data into a grid map according to road lane information obtained from image processing, then uses region labeling and template matching to detect box-model obstacles on the grid map, and finally tracks the obstacles. In order to avoid false alarm or miss matching, multiple hypothesis tracking and Kalman filter were used for obstacle tracking. The approach can detect obstacles accurately and track stably within 100 ms per frame on the autonomous vehicle.

Key words:  3D Lidar    grid map    obstacle detection    multiple hypothesis tracking    Kalman filter
出版日期: 2012-10-09
:     
基金资助:

国家自然科学基金资助项目(90820306).

通讯作者: 龚小谨,女,讲师.     E-mail: gongxj@zju.edu.cn
作者简介: 杨飞(1986-),男,硕士生,主要从事机器视觉研究.E-mail:flyyoung@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.

YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar. J4, 2012, 46(9): 1565-1571.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2012.09.003        http://www.zjujournals.com/xueshu/eng/CN/Y2012/V46/I9/1565

[1] VU T D, BURLET J, AYCARD O. Gridbased localization and online mapping with moving objects detection and tracking: new results[C]∥Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 684-689.
[2] PETROVSKAYA A, THRUN S. Model based vehicle detection and tracking for autonomous uban diving[J]. Autonomous Robots, 2009, 26:123-129.
[3] DARMS M, RYBSKI P E, BAKER E, et al.. Obstacle detection and tracking for the urban challenge[J]. Intelligent Transportation Systems, 2009, 10(3): 475-485.
[4] DARMS M, RYBSKI P E, URMSON C. Classification and tracking of dynamic objects with multiple sensors for autonomous driving in urban environments[C] ∥Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 1197-1202.
[5] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18.
[6] LEONARD J, HOW J, TELLER S, et al. A perceptiondriven autonomous urban vehicle[J]. Springer Tracts in Advanced Robotics, 2009, 56: 163-230.
[7] KONSTANTINOVA P, UDVAREV A, SEMERDJIEV T. A study of a target tracking algorithm using global nearest neighbor approach[C]∥ International Conference on Computer Systems and Technologies. Sofia:Citeseer, 2003: 290-295.
[8] HE Lifeng, CHAO Yuyang, SUZUKI K, et al. Fast connectedcomponent labeling[J]. Pattern Recognition, 2009, 42(9): 1977-1987.
[9] TUBBS J D. A note on binary template matching[J]. Pattern Recognition, 1989, 22(4): 359-365.
[10] FERGUSON D, DARMS M,URMSON C, et al. Detection, prediction, and avoidance of dynamic obstacles in urban environment[C]∥ Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 1149-1154.
[11] REID D B. An algorithm for tracking multiple targets[J]. Automatic Control, 1979, 24(6): 843-854.
[12] WELCH G, BISHOP G. An introduction to the Kalman filter[R]. North Carolina, USA: University of North Carolina, 1995.

[1] 刘景明, 黄平捷, 侯迪波, 张光新, 张宏建. 河流突发污染的污染物浓度动态校正方法[J]. 浙江大学学报(工学版), 2017, 51(12): 2459-2465.
[2] 叶肖伟, 刘坦, 董传智, 陈斌. 基于卡尔曼滤波和中性轴位置的结构损伤识别[J]. 浙江大学学报(工学版), 2017, 51(10): 2012-2018.
[3] 宋开臣,曾瑶,叶凌云. 基于多传感器信息融合的涡街信号处理方法[J]. 浙江大学学报(工学版), 2016, 50(7): 1307-1312.
[4] 莫元富, 于德新, 宋军, 郭亚娟. 基于信道负载阈值的车联网信标消息生成策略[J]. 浙江大学学报(工学版), 2016, 50(1): 21-26.
[5] 朱光明, 蒋荣欣, 周凡, 田翔, 陈耀武. 带测量偏置估计的鲁棒卡尔曼滤波算法[J]. 浙江大学学报(工学版), 2015, 49(7): 1343-1349.
[6] 付兴伟, 吴功平, 周鹏, 于娜. 基于卡尔曼滤波的巡视机器人能耗估计[J]. 浙江大学学报(工学版), 2015, 49(4): 670-675.
[7] 朱株,刘济林. 基于马尔科夫随机场的三维激光雷达路面实时分割[J]. 浙江大学学报(工学版), 2015, 49(3): 464-469.
[8] 曹腾,项志宇,刘济林. 基于视差空间V-截距的障碍物检测[J]. 浙江大学学报(工学版), 2015, 49(3): 409-414.
[9] 王盛,项志宇. 基于多谱融合的植被环境中障碍物检测[J]. 浙江大学学报(工学版), 2015, 49(11): 2223-2229.
[10] 陆国生,李立言,赵民建. 全球导航卫星系统矢量载波环的设计与分析[J]. 浙江大学学报(工学版), 2015, 49(1): 20-26.
[11] 郑驰, 项志宇, 刘济林. 融合光流与特征点匹配的单目视觉里程计[J]. J4, 2014, 48(2): 279-284.
[12] 程健, 项志宇, 于海滨, 刘济林. 城市复杂环境下基于三维激光雷达实时车辆检测[J]. 浙江大学学报(工学版), 2014, 48(12): 2101-2106.
[13] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[14] 刘涛, 赵巨峰, 徐之海, 冯华君, 陈慧芳. 基于卡尔曼滤波的红外图像增强算法[J]. J4, 2012, 46(8): 1534-1539.
[15] 路丹晖, 周文晖, 龚小谨, 刘济林. 视觉和IMU融合的移动机器人运动解耦估计[J]. J4, 2012, 46(6): 1021-1026.