Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1457-1464    DOI: 10.3785/j.issn.1008-973X.2012.08.016
土木工程     
混凝土中钢筋腐蚀过程的极化曲线分析
姬永生1,2, 王志龙2, 徐从宇2, 周敏2, 赵稳2
1.中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221008;
2.中国矿业大学 力建学院,江苏 徐州 221008
Study on polarization curve diagrams of steel corrosion in concrete
JI Yong-sheng1,2, WANG Zhi-long2, XU Cong-yu2, ZHOU Min2, ZHAO Wen2
1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and
 Technology, Xuzhou 221116 China; 2. School of Mechanics & Civil Engineering, China University of Mining and
 Technology, Xuzhou 221116 China
 全文: PDF 
摘要:

为了确定混凝土中钢筋锈蚀速率的控制因素,运用腐蚀极化曲线图分析活化钢筋阴阳极极化曲线和腐蚀电流随环境相对湿度的变化规律,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程.结果表明,有锈蚀产物存在时,锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程的阴极去极化剂,钢筋的总腐蚀电流为氧去极化和锈蚀产物去极化产生的腐蚀电流的加和.钢筋的总腐蚀电流随着环境相对湿度的提高而增大,和氧在混凝土中的扩散速率的变化趋势截然相反,从而证明氧仅是混凝土内钢筋开始的锈蚀的必备条件,但却不是混凝土中钢筋锈蚀过程控制因素.

关键词: 混凝土钢筋极化曲线腐蚀产物    
Abstract:

In order to confirm the controlling factor of steel corrosion rate in concrete, variation of cathodic and anodic polarization curves and corrosion rate of active steel under different relative humidity was analyzed with the polarization curve diagrams. Based on metal corrosion theory, the corrosion mechanism of the reinforcing bar in concrete in the process of wet and dry cycles was fully explained. The results show that after the corrosion products are enough, FeOOH in corrosion layer can act as depolarizer instead of oxygen. The total corrosion current is the summation of corrosion currents produced by oxygen depolarization and corrosion products depolarization. When concrete dries, the total corrosion rate of active steel decreases while the diffusion rate of oxygen in the concrete increases. So the oxygen is one of the factors that influence corrosion rate but is not the factor controlling corrosion process of steel in concrete.

Key words: concrete    steel    polarization curve    oxygen    corrosion products
出版日期: 2012-09-03
:  TU 375  
基金资助:

国家自然科学基金资助项目(51178455).

作者简介: 姬永生(1970—),男,副教授:主要从事混凝土耐入性研究.E-mail:jysbh@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姬永生, 王志龙, 徐从宇, 周敏, 赵稳. 混凝土中钢筋腐蚀过程的极化曲线分析[J]. J4, 2012, 46(8): 1457-1464.

JI Yong-sheng, WANG Zhi-long, XU Cong-yu, ZHOU Min, ZHAO Wen. Study on polarization curve diagrams of steel corrosion in concrete. J4, 2012, 46(8): 1457-1464.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2012.08.016        http://www.zjujournals.com/xueshu/eng/CN/Y2012/V46/I8/1457

[1] 刘西拉,苗澎柯.混凝土结构中的钢筋锈蚀及其耐久性计算[J].土木工程学报,1990,23(4): 69-78.
LIU Xila, MIAO Shuke. Steel corrosion and the durability calculation of reinforced concrete structures[J]. China Civil Engineering Journal, 1990, 23(4): 69-78.
[2] BAZANT Z P. Physical model for steel corrosion in concrete sea structures: theory [J]. ASCE Journal of Structural Division, 1979, 105(6): 1137-1154.
[3] 耿欧.混凝土构件中钢筋锈蚀速率预计模型研究[D].徐州:中国矿业大学,2008,6: 32-43.
Geng Ou. Prediction models of steel bar corrosion rate in concrete member[D]. Xuzhou: China University of Mining and Technology, 2008, 6: 32-43.
[4] GHODS P, ISGOR O B, POURGHAZ M. A practical method for calculating the corrosion rate of uniformly depassivated reinforcing bars in concrete[J]. Materials and Corrosion, 2007, 58(4): 265-272.
[5] HUET B, L’HOSTIS V, SANTARINI G, et al. Steel corrosion in concrete: Determinist modeling of cathodic reaction as a function of water saturation degree[J]. Corrosion Science, 2007, 49(4): 1918-1932.
[6] 宋晓冰,刘西拉.混凝土中钢筋腐蚀速度的过程控制[J].工业建筑,2000,30(6): 53-56.
SONG Xiaobing, LIU Xila. Process control of reinforcement corrosion in concrete [J]. Industrial Construction, 2000, 30(6): 53-56.
[7] LIU T, WEYERS R W. Modeling the dynamic corrosion process in chloride contaminated concrete structures [J\]. Cement and Concrete Research, 1998, 28(3): 365-379.
[8] 姬永生.自然与人工气候环境下钢筋混凝土退化过程的相关性研究[D].徐州:中国矿业大学,2007, 12: 88-94
JI Yongsheng. Correlation of deterioration process of reinforced concrete under natural and artificial accelerated climate environments \
[D\]. Xuzhou: China University of Mining and Technology, 2007, 12: 88-94.
[9] GLASS G K, PAGE C L, SHORT N R. Factors affecting the corrosion rate of steel in carbonated mortars [J]. Corrosion Science, 1991, 32(12): 1283-1294.
[10] HANS B. Corrosion in reinforced concrete structures [M]. Abington: Woodhead Publishing Ltd and CRC Press LLC, 2005: 7-9.
[11] 姬永生,申建立,王磊,等.混凝土中钢筋锈蚀过程非氧扩散控制的试验研究[J].湖南大学学报:自然版, 2012, (3) :11-16
JI Yongsheng, SHEN Jianli, WANG Lei. Experimental study of process control of reinforcement corrosion in concrete [J]. Journal of Hunan University: Natural Sciences, 2012, (3): 11-16.
[12] 刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993: 40-50.
[13] 姬永生,袁迎曙.氯离子诱发钢筋混凝土结构局部修复的电化学不相容机理研究[J].混凝土, 2004(8): 11-14.
JI Yongsheng, YUAN Yingshu. Study on electrochemical incompatibility mechanisms of patchrepaired chloride contaminated in reinforced concrete structure[J]. Concrete, 2004(8): 11-14.
[14] 梁成浩主编.金属腐蚀学导论[M].北京:机械工业出版社,1999,5: 42-45.
[15] 洪定海编著.混凝土中钢筋的锈蚀与保护[M].北京:中国铁道出版社,1998(9): 29-32.
[16] 姬永生,司维,袁迎曙,等.混凝土孔隙水饱和度的试验研究[J].四川建筑科学研究.2010, 36 (1): 166-168.
JI Yongsheng, SI Wei, YUAN Yingshu, et al. Experimental research on degree of pore saturation in concrete [J]. Sichuan Building Science Research, 2010, 36 (1): 166-168.
[17] TAMURA H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corrosion Science, 2008, 50(7): 1872-1883.
[18] 姬永生,司维,宋萌,等.混凝土中钢筋锈蚀层发展和细观结构分析[J].建筑结构学报(增刊).2009,30 (S2): 303-308.
JI Yongsheng, SI Wei, SONG Meng, et al. Research on development and submicroscopic structure of steel rust layer in concrete [J].Journal of Building Construction(Supplement). 2009, 30 (S2): 303-308.

[1] 蔡自伟, 陆洲导, 李凌志, 苏磊, 林闯. 梁侧锚固钢板加固混凝土梁受剪性能试验[J]. 浙江大学学报(工学版), 2018, 52(1): 82-88.
[2] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[3] 余翔, 孔宪京, 邹德高. 混凝土防渗墙变形与应力分布特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1704-1711.
[4] 李奔奔, 江佳斐, 豆香香, 肖平成. 新型被动式真三轴试验装置[J]. 浙江大学学报(工学版), 2017, 51(9): 1688-1694.
[5] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687.
[6] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[7] 万晨光, 申爱琴, 郭寅川. 桥面铺装调平层与沥青面层层间剪切行为[J]. 浙江大学学报(工学版), 2017, 51(7): 1355-1360.
[8] 徐铨彪, 陈刚, 贺景峰, 龚顺风, 肖志斌. 复合配筋混凝土预制方桩接头抗弯性能试验[J]. 浙江大学学报(工学版), 2017, 51(7): 1300-1308.
[9] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[10] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[11] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[12] 曹伟波, 王丽军, 李希. 壁流蜂窝式微填充床制备及变压吸附中的应用[J]. 浙江大学学报(工学版), 2017, 51(4): 777-783.
[13] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[14] 倪红波, 邓军权, 施向南, 周兴社, 赵伟超, 宋亚龙, 贾江波. 脉率变异性睡眠分期方法[J]. 浙江大学学报(工学版), 2017, 51(3): 572-576.
[15] 金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根. 基于动态压磁的锈蚀钢筋疲劳特性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(2): 225-230.