Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1412-1418    DOI: 10.3785/j.issn.1008-973X.2012.08.009
机械工程     
超磁致伸缩构件精密加工异形孔滑模控制
张雷, 邬义杰, 王彬, 刘孝亮
浙江大学 流体动力与机电系统国家重点实验室,现代制造工程研究所,浙江,杭州310027
Non-cylinder holes precision machining by giant magnetostrictive
components with sliding mode control
ZHANG Lei, WU Yi-jie, WANG Bin, LIU Xiao-liang
The State Key Laboratory of Fluid Power Transmission and Control,Institute of Modern Manufacture
Engineering,Zhejiang University, Hangzhou 310027
 全文: PDF 
摘要:

采用一组合趋近律的离散滑模控制方法,用于超磁致伸缩构件精密加工异形孔的高精度、实时微位移控制.该方法通过超磁致伸缩构件驱动模型与异形孔精密加工动力学分析,建立系统的状态方程,并通过微位移实时反馈解决切削干扰力不可测的问题.经微位移控制仿真和实验表明:超磁致伸缩材料(GMM)构件精密加工异形孔的微位移仿真误差在±0.8%以内,并具备快速趋近滑模面和抑制抖振的特点;微位移跟踪实验误差在±5%以内.

关键词: 超磁致伸缩构件异形孔精密加工组合趋近律滑模控制    
Abstract:

Applied a method of discrete sliding mode control with combination reaching law, to realize high precision of micro displacement and real-time control of non-cylinder holes precision machining by giant magnetostrictive components. In the first, a state equation of the sliding control mode was established by the driven model of giant magnetostrictive components and the dynamics analysis of non-cylinder holes precision machining. And solve the problem of unpredictable cutting interference by real-time feedback of micro-displacement. The simulation and experimental results show, the micro-displacement simulation error of non-cylinder holes precision machining by giant magnetostrictive components within ± 0.8%, and has the characteristics of fast approaching the sliding surface and inhibits of buffeting. And the experiments of micro-displacement tracking error within ± 5%.

Key words: giant magnetostrictive components    non-cylinder holes    precision machining    combination reaching law    sliding mode control
出版日期: 2012-09-03
:  TP 271.7  
基金资助:

国家自然科学基金资助项目(50975256);国家教育部博士点基金资助项目(20110101110014);浙江省自然科学基金重点资助项目(Z1080537).

通讯作者: 邬义杰,男,教授,博导.     E-mail: wyj1116@zju.edu.cn
作者简介: 张雷(1982—),男,博士生.主要研究智能材料的应用.E-mail:zhanglei200812@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张雷, 邬义杰, 王彬, 刘孝亮. 超磁致伸缩构件精密加工异形孔滑模控制[J]. J4, 2012, 46(8): 1412-1418.

ZHANG Lei, WU Yi-jie, WANG Bin, LIU Xiao-liang. Non-cylinder holes precision machining by giant magnetostrictive
components with sliding mode control. J4, 2012, 46(8): 1412-1418.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2012.08.009        http://www.zjujournals.com/xueshu/eng/CN/Y2012/V46/I8/1412

[1] SUHARA T, ATO S, TAKIGUCHI M, et al. Friction and lubrication characteristics of piston pin boss bearings of an automotive engine[C]∥ New Diesel Engines & Compoents. Detroit, USA: SAE Technical Paper. 1997: 42-71.
[2] 朱更红,谌国权.活塞异型销孔的数控加工技术[J].内燃机配件,2002(03): 27-28.
ZHU Genghong, ZHAN Guoquan. The noncylindrical piston pinholes precision machining by NC technology [J]. Journal of Internal Combustion Engine Accessories, 2002(03): 27-28.
[3] ZHAI Peng,ZHANG Chengrui,WANG Xinliang,et al. Novel mechanism for boring noncylinder piston pinhole based on giant magnetostrictive materials [J]. Journal of Shanghai University: English Edition SHDY, 2008, 12(04): 363-367.
[4] LI Min, CHEN Weimin, WANG MingChun,et al. A load simulation method of piezoelectric actuator in FEM for smart structures [J]. Science in China Series E: Technological Sciences, 2009,(09): 2576-2584.
[5] 赵章荣,邬义杰,顾新建,等.用神经网络结构实现超磁致伸缩智能构件滑模控制[J].光学精密工程.2009,17(04): 778-786.
ZHAO Zhangrong, WU Yijie, GU Xinjian, et al. Implementation of sliding mode control of giant magnetostrictive smart component by neural network [J]. Optics and Precision Engineering, 2009, 17(04): 778-786.
[6] 王湘江,王兴松.基于KP模型的GMA迟滞系统辨识与补偿[J].中国机械工程.2008,19(10): 1167-1173.
WANG Xiangjiang, WANG Xingsong. GMM hysteresis system identification and compensation based on kp model [J]. China Mechanical Engineering, 2008,19(10): 1167-1173.
[7] 贾振元,王晓煜,王福吉.超磁致伸缩执行器的动力学参数及磁滞模型参数的辨识方法[J].机械工程学报. 2007, 43(10):  9-13.
JIA Zhenyuan, WANG Xiaoyu, WANG Fuji. Identification method of giant magnetostrictive transducer’s dynamic parameters and magnetic parameters [J]. Chinese Journal of Mechanical Engineering, 2007, 43(10): 9-13.
[8] 龚大成,唐志峰,吕福在,等.非线性Preisach理论与超磁致伸缩执行器高阶迟滞建模[J].机械工程学报.2009, 45(12): 252-256.
GONG Dacheng, TANG Zhifeng, LV Fuzai, et al. Nonlinear preisach model and high order hystersis modeling for giant magnetostrictive actuator [J]. Chinese Journal of Mechanical Engineering, 2009, 45(12): 252-256.
[9]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005: 342-387.
[10] 孙宝元,等.现代执行器[M].长春:吉林大学出版社,2003: 235-279.
[11] 孔繁森,赵新刚,刘春颖.切削过程混沌颤振的控制方法仿真研究[J].振动与冲击. 2008, 27(11): 22-26.
KONG Fansen, ZHAO Xingang, LIU Chunying. Simulation study of chaotic chatter control in cutting process [J]. Journal of Vibration And Shock, 2008, 27(11): 22-26.

[1] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[2] 郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.
[3] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[4] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[5] 王飞, 管成, 肖扬, 李威. 挖掘机动臂势能回收系统的压力滑模控制[J]. 浙江大学学报(工学版), 2016, 50(2): 201-208.
[6] 王尧尧, 顾临怡, 高 明, 贾现军, 朱康武. 水下运载器非奇异快速终端滑模控制[J]. 浙江大学学报(工学版), 2014, 48(9): 1541-1551.
[7] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.
[8] 钱鹏飞, 陶国良, 孟德远, 钟伟, 班伟, 朱晓. 电控气动离合器执行器滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2014, 48(6): 1102-1106.
[9] 全宇, 年珩. 非理想电网下双馈感应发电机谐振滑模控制[J]. J4, 2014, 48(4): 575-580.
[10] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[11] 刘子建, 吴敏, 陈鑫, 王春生. 永磁同步电机混合非线性控制策略[J]. J4, 2010, 44(7): 1303-1307.
[12] 孙宁, 张化光, 王智良. 不确定分数阶混沌系统的滑模投影同步[J]. J4, 2010, 44(7): 1288-1291.
[13] 路波, 陶国良, 刘昊, 等. 零重力模拟气动悬挂系统的建模及恒压控制[J]. J4, 2010, 44(2): 379-385.
[14] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[15] 白寒, 管成, 潘双夏. 基于模糊决策的推土机滑模鲁棒自适应控制[J]. J4, 2009, 43(12): 2178-2185.